Advances in Combinatorial Optimization for Graphical Models

Rina Dechter University of California, Irvine

Radu Marinescu

IBM Research - Ireland

Alexander Ihler University of California, Irvine

Lars Otten University of California, Irvine (now Google Inc.)

Outline

Introduction

- Graphical models
- Optimization tasks for graphical models

Inference

- Variable Elimination, Bucket Elimination

Bounds and heuristics

- Basics of search
- Bounded variable elimination and iterative cost shifting

AND/OR Search

- AND/OR search spaces
- Depth-First Branch and Bound, Best-First search

Exploiting parallelism

- Distributed and parallel search
- Software

Combinatorial Optimization

Earth observing satellites

Investments

Find an optimal schedule for the satellite that maximizes the number of photographs taken, subject to on-board recording capacity How much to invest in each asset to earn 8 cents per Invested dollar and the investment risk is minimized

Combinatorial Optimization

Communications

Assign frequencies to a set of radio links such that interferencies are minimized

Bioinformatics

Find a joint haplotype configuration for all members of the pedigree which maximizes the probability of data

Constrained Optimization

Power plant scheduling

Unit #	Min Up Time	Min Down Time
1	3	2
2	2	1
3	4	1

Variables: X_1, X_2, \ldots, X_n Domains: ON, OFF Constraints: $X_1 \lor X_2$, $\neg X_3 \lor X_4$, min-uptime, min-downtime Power demand: Power $(X_i) \ge$ Demand

Objective: minimize TotalFuelConsumption (X_1, \ldots, X_n)

Constraint Optimization Problems

A finite COP is a triple $R = \langle X, D, F \rangle$ where: $X = \{x_1, \dots, x_n\}$ -- variables $D = \{D_1, \dots, D_n\}$ -- domains $F = \{f_{\alpha_1}, \dots, f_{\alpha_m}\}$ -- cost functions

Primal graph: Functions - arcs / cliques

 $F(a, b, c, d, f, g) = f_1(a, b, d) + f_2(d, f, g) + f_3(b, c, f) + f_4(a, c)$

Global Cost Function

$$F(X) = \sum f_{\alpha}(x_{\alpha})$$

 α

f(A,B,D) has scope {A,B,D}

Α	В	D	Cost
1	2	3	3
1	3	2	2
2	1	3	∞
2	3	1	0
3	1	2	5
3	2	1	0

Constraint Networks Map coloring

Variables: countries (A, B, C, etc.) Values: colors (red, green, blue) Constraints: $A \neq B$, $B \neq D$, $A \neq D$, etc.

Α	В
red	green
red	blue
green	red
green	blue
blue	red
blue	green

Probabilistic Networks

= Find $\arg \max P(S) \cdot P(C|S) \cdot P(B|S) \cdot P(X|C,S) \cdot P(D|C,B)$

Monitoring Intensive-Care Patients

The "alarm" network – 37 variables, 509 parameters (instead of 2^{37})

Genetic Linkage Analysis

- 6 individuals
- Haplotype: {2, 3}
- Genotype: {6}
- Unknown

Pedigree: 6 people, 3 markers

Influence Diagrams

Task: find optimal policy

$$E = \max_{\Delta = (\delta_1, \dots, \delta_m)} \sum_{x = (x_1, \dots, x_n)} \prod_i P_i(x) u(x)$$

Chance variables: $X = x_1, \dots, x_n$ Decision variables: $D = d_1, \dots d_m$ CPDs for chance variables: $P_i = P(x_i | x_{pa_i}), i = 1, \dots, n$ Reward components: $r = \{r_1, \dots, r_j\}$ Utility function: $u(X) = \sum_i r_i(X)$

Graphical Models

- A graphical model (X, D, F): •
 - $-X = \{x_1, \ldots, x_n\}$ variables
 - $-D = \{D_1, \ldots, D_n\}$ domains
 - $F = \{f_{\alpha_1}, \ldots, f_{\alpha_m}\}$ functions
 - (constraints, CPTs, CNFs, ...)
- **Operators** •
 - Combination
 - Elimination (projection)
- Tasks •
 - Belief updating: $\sum_{X \setminus V} \prod_{j} P_{j}$ _
 - $\mathsf{MPE}/\mathsf{MAP}: {}^{\max_X}_X \prod_j P_j$ _
 - Marginal MAP: $\max_{Y} \sum_{X \setminus Y} \prod_{j} P_{j}$ _

 - **CSP**: $\prod_{j} C_{j}(x)$ **WCSP**: $\min_{X} \sum_{j} f_{j}$
 - MEU: $\max_{\Delta} \sum_{x} P(x)u(x)$

- All these tasks are NP-hard
 - Exploit problem structure
 - Identify special cases
 - Approximate

Example Domains for Graphical Models

- Web Pages and Link Analysis
- Communication Networks (Cell phone fraud detection
- Natual Language Processing (e.g., information extraction and semantic parsing)
- Battlespace Awarness
- Epidemiological Studies
- Citation Networks

• ...

- Intelligence Analysis (terrorist networks)
- Financial Transactions (money laundering)
- Computational Biology
- Object Recognition and Scene Analysis

Combinatorial Optimization Tasks

- Most Probable Explanation (MPE), or Maximum A Posteriori (MAP)
- M Best MPE/MAP
- Marginal MAP (MMAP)
- Weighted CSPs (WCSP), Max-CSPs, Max-SAT
- Integer Linear Programs
- Maximum Expected Utility (MEU)

Outline

Introduction

- Graphical models
- Optimization tasks for graphical models
- Solving optimization problems by inference and search
- Inference
- Bounds and heuristics
- AND/OR Search
- Exploiting parallelism
- Software

Solution Techniques

Combination of Cost Functions

Α	B	f(A,B)
b	b	6
b	g	0
g	b	0
g	g	6

+

Α	В	С	f(A,B,C)	
b	b	b	12	
b	b	g	6	
b	g	b	0	
b	g	g	6	=
g	b	b	6	
g	b	g	0	
g	g	b	6	
g	g	g	12	

В	С	f(B,C)
b	b	6
b	g	0
g	b	0
g	g	6

0 + 6

Elimination in a Cost Function

Conditioning in a Cost Function

Conditioning vs. Elimination

Conditioning (search)

1 "denser" problem

Outline

- Introduction
- Inference
 - Variable Elimination, Bucket Elimination
- Bounds and heuristics
- AND/OR Search
- Exploiting parallelism
- Software

Computing the Optimal Cost Solution

Constraint graph

 $OPT = \min_{a,e,d,c,b} f(a) + f(a,b) + f(a,c) + f(a,d) + f(b,c) + f(b,d) + f(b,e) + f(c,e)$ Combination $\min_{a} f(a) \min_{e,d} f(a,d) + \min_{c} f(a,c) + f(c,e) + \min_{b} f(a,b) + f(b,c) + f(b,d) + f(b,e)$ $\lambda_{B}(a,d,c,e)$

Variable Elimination

Bucket Elimination

Algorithm **elim-opt** [Dechter, 1996] Non-serial Dynamic Programming [Bertele & Briochi, 1973]

Generating the Optimal Assignment

$$\mathbf{b}^{*} = \arg\min_{\mathbf{b}} f(a^{*}, b) + f(b, c^{*}) + f(b, d^{*}) + f(b, e^{*})$$

$$\mathbf{c}^{*} = \arg\min_{\mathbf{c}} f(c, a^{*}) + f(c, e^{*}) + \lambda_{B \to C}(a^{*}, d^{*}, c, e^{*})$$

$$\mathbf{d}^{*} = \arg\min_{\mathbf{d}} f(a^{*}, d) + \lambda_{C \to D}(a^{*}, d, e^{*})$$

$$\mathbf{c}^{*} = \arg\min_{\mathbf{e}} \lambda_{D \to E}(a^{*}, e)$$

$$\mathbf{a}^{*} = \arg\min_{\mathbf{a}} f(a) + \lambda_{E \to A}(a)$$

$$\mathbf{c}^{*} = \arg\min_{\mathbf{a}} f(a) + \lambda_{E \to A}(a)$$

Return: ($\mathbf{a}^*, \mathbf{b}^*, \mathbf{c}^*, \mathbf{d}^*, \mathbf{e}^*$)

Complexity of Bucket Elimination

Algorithm **elim-opt** [Dechter, 1996] Non-serial Dynamic Programming [Bertele & Briochi, 1973]

Complexity of Bucket Elimination

Bucket Elimination is time and space

 $w^*(d)$: the induced width of the primal graph along ordering d

r = number of functions

The effect of the ordering:

B C D E A

constraint graph

С

B

Finding the smallest induced width is hard!

Outline

- Introduction
- Inference

Bounds and heuristics

- Basics of search: DFS versus BFS
- Mini-Bucket Elimination
- Weighted Mini-Buckets and Iterative Cost-Shifting
- Generating Heuristics using Mini-Bucket Elimination
- AND/OR Search
- Exploiting parallelism
- Software

Outline

- Introduction
- Inference

Bounds and heuristics

- Basics of search: DFS versus BFS
- Mini-Bucket Elimination
- Weighted Mini-Buckets and Iterative Cost-Shifting
- Generating Heuristics using Mini-Bucket Elimination
- AND/OR Search
- Exploiting parallelism
- Software

OR Search Spaces

A B 1	f_1	AC	f_2	Α	Е	f_3	Α	F	f_4	В	С	f ₅	В	D	f_6	В	Ε	f ₇	C	21	D	f_8	Ε	F	f ₉
002	2	0 0	3	0	0	0	0	0	2	0	0	0	0	0	4	0	0	3	() (0	1	0	0	1
0 1 0	0	01	0	0	1	3	0	1	0	0	1	1	0	1	2	0	1	2	()	1	4	0	1	0
10	1	10	0	1	0	2	1	0	0	1	0	2	1	0	1	1	0	1	1		0	0	1	0	0
1 1 4	4	1 1	1	1	1	0	1	1	2	1	1	4	1	1	0	1	1	0	1		1	0	1	1	2

Objective function:
$$F^* = \min_x \sum_{\alpha} f_{\alpha}(x_{\alpha})$$

OR Search Spaces

A B f ₁	AC f ₂ A	$E f_3 A F f_4$	$\mathbf{B} \ \mathbf{C} \ \mathbf{f}_5 \ \mathbf{B} \ \mathbf{D} \ \mathbf{f}_6$	B E f ₇ C D	f ₈ E F f ₉
0 0 2	0030	0002	0 0 0 0 4	00300	1 0 0 1
0 1 0	0 1 0 0	1 3 0 1 0	0 1 1 0 1 2	0 1 2 0 1	4 0 1 0
101	1001	0 2 1 0 0	1 0 2 1 0 1	10100	0 1 0 0
1 1 4	1 1 1 1	1 0 1 1 2	1 1 4 1 1 0	1 1 0 1 1	0 1 1 2

Objective function:
$$F^* = \min_x \sum_{\alpha} f_{\alpha}(x_{\alpha})$$

The Value Function

$A B f_1$	$A C f_2$	A E f ₃	A F f_4 B C f_5	B D f ₆ E	B E f ₇	C D f ₈	E F f ₉
0 0 2	0 0 3	0 0 0	0 0 2 0 0 0	0 0 4 0	0 0 3	0 0 1	0 0 1
0 1 0	0 1 0	0 1 3	0 1 0 1 1	0 1 2 0	0 1 2	0 1 4	0 1 0
1 0 1	100	102	1002	101	101	1 0 0	100
1 1 4	1111	1 1 0	1 1 2 1 1 4	1 1 0 1	1 1 0	1 1 0	1 1 2

Value of node = minimal cost solution below it

The Optimal Solution

$A B f_1$	$A C f_2$	A E f ₃	A F f_4 B C f_5	B D f ₆ E	B E f ₇	C D f ₈	E F f ₉
0 0 2	0 0 3	0 0 0	0 0 2 0 0 0	0 0 4 0	0 0 3	0 0 1	0 0 1
0 1 0	0 1 0	0 1 3	0 1 0 1 1	0 1 2 0	0 1 2	0 1 4	0 1 0
1 0 1	100	102	1002	101	101	1 0 0	100
1 1 4	1111	1 1 0	1 1 2 1 1 4	1 1 0 1	1 1 0	1 1 0	1 1 2

Objective function:
$$F^* = \min_x \sum_{\alpha} f_{\alpha}(x_{\alpha})$$

Basic Heuristic Search Schemes

Heuristic function $\tilde{f}(\hat{x}_p)$ computes a lower bound on the best extension of partial configuration \hat{x}_p and can be used to guide heuristic search. We focus on:

1. Branch-and-Bound

Use heuristic function $\tilde{f}(\hat{x}_p)$ to prune the depth-first search tree Linear space

2. Best-First Search

Always expand the node with the lowest heuristic value $\tilde{f}(\hat{x}_p)$ Needs lots of memory

Classic Depth-First Branch and Bound

(UB) Upper Bound = best solution so far

Each node is a COP subproblem (defined by current conditioning)

g(n) : cost of the path from root to n $\tilde{f}(n) = g(n) + \tilde{h}(n)$ (lower bound)

Prune if $\tilde{f}(n) \ge UB$

 $ilde{h}(n)$: under-estimates optimal cost below n

Best-First vs. Depth-First Branch and Bound

- Best-First (A*):
 - Expands least number of nodes given h
 - Requires storing full search tree in memory

- Depth-First BnB:
 - Can use linear space
 - If finds an optimal solution early, will expand the same search space as Best-First (if search space is a tree)
 - BnB can improve the heuristic function dynamically
How to Generate Heuristics

- The principle of relaxed models
 - Mini-Bucket Elimination
 - Bounded directional consistency ideas
 - Linear relaxations for integer programs

Outline

- Introduction
- Inference

Bounds and heuristics

- Basics of search: DFS versus BFS
- Mini-Bucket Elimination
- Weighted Mini-Buckets and Iterative Cost-Shifting
- Generating Heuristics using Mini-Bucket Elimination
- AND/OR Search
- Exploiting parallelism
- Software

Mini-Bucket Approximation

Split a bucket into mini-buckets => bound complexity

bucket (X) =

$$\begin{cases} f_1, \dots, f_r, f_{r+1}, \dots, f_n \\ \end{pmatrix}$$

$$\lambda_X(\cdot) = \min_x \sum_{i=1}^n f_i(x, \dots)$$

$$\{ f_1, \dots, f_r \} \qquad \{ f_{r+1}, \dots, f_n \}$$

$$\lambda'_X(\cdot) = \left(\min_x \sum_{i=1}^r f_i(\cdot) \right) + \left(\min_x \sum_{i=r+1}^n f_i(\cdot) \right)$$

$$\lambda'_X(\cdot) \leq \lambda_X(\cdot)$$

Exponential complexity decrease: $O(e^n) \rightarrow O(e^r) + O(e^{n-r})$

Mini-Bucket Elimination

[Dechter and Rish, 2003]

Mini-Bucket Elimination Semantics

Semantics of Mini-Buckets: Splitting a Node

Variables in different buckets are renamed and duplicated [Kask *et al.*, 2001], [Geffner *et al.*, 2007], [Choi *et al.*, 2007], [Johnson et al. 2007]

Before Splitting: Network N After Splitting: Network *N*'

MBE-MPE(i): Algorithm Approx-MPE

- Input: i max number of variables allowed in a mini-bucket
- Output: [lower bound (P of a suboptimal solution), upper bound]

Example: approx-mpe(3) elim-mpe versus Max variables B: $f(a,b) \quad f(b,c)$ $f(b,d) \quad f(b,e)$ in a minipucket C: $\lambda_{B \to C}(a,c) \quad f(a,c) \quad f(c,e)$ 3 D: $f(a,d) \quad \lambda_{B \to D}(d,e)$ 3 in $\mathsf{B:} \underbrace{f(a,b) \quad f(b,c) \quad f(b,d) \quad f(b,e)}_{\checkmark}$ C: $\lambda_{B \to C}(a, c, d, e) f(a, c) f(c, e)$ D: $\underbrace{f(a,d) \ \lambda_{C \to D}(a,d,e)}_{\substack{\lambda_{D \to E}(a,e)}}$ E: $\underbrace{f(a,d) \ \lambda_{C \to D}(a,d,e)}_{\substack{\lambda_{D \to E}(a,e)}}$ E: $\lambda_{C \to E}(a, e) \quad \lambda_{D \to E}(a, e)$ 2 $\underbrace{f(a)\lambda_{E\to A}(a)}_{\vdash}$ 1 $\int_{\mathbf{OPT}}^{f(\underline{a})} w^* = 4$ A: $w^* = 2$ L = lower bound

[Dechter and Rish, 1997]

Mini-Bucket Decoding

$$\hat{\mathbf{b}} = \arg\min_{\mathbf{b}} f(\hat{a}, b) + f(b, \hat{c}) + f(b, \hat{d}) + f(b, \hat{e})$$

$$\hat{\mathbf{c}} = \arg\min_{\mathbf{c}} \lambda_{B \to C}(\hat{a}, c) + f(c, \hat{a}) + f(c, \hat{e})$$

$$\hat{\mathbf{d}} = \arg\min_{\mathbf{d}} f(\hat{a}, d) + \lambda_{B \to D}(d, \hat{e})$$

$$\hat{\mathbf{a}} = \arg\min_{\mathbf{e}} \lambda_{C \to E}(\hat{a}, e) + \lambda_{D \to E}(\hat{a}, e)$$

$$\hat{\mathbf{a}} = \arg\min_{\mathbf{a}} f(a) + \lambda_{E \to A}(a)$$

$$\text{Greedy configuration = upper bound}$$

$$\min_{\mathbf{b}} \sum f(\cdot)$$

$$f(a, b) \quad f(b, c)$$

$$f(a, c) \quad f(c, e)$$

$$\int f(a, d) \quad \lambda_{B \to D}(d, e)$$

$$\int (bucket \mathbf{D})$$

$$\int f(a, d) \quad \lambda_{B \to D}(d, e)$$

$$\int (bucket \mathbf{D})$$

$$\int (f(a, d) \quad \lambda_{B \to D}(d, e))$$

$$\int (f(a, d) \quad \lambda_{B \to D}(d, e)$$

$$\int (f(a, d) \quad \lambda_{B \to D}(d, e))$$

$$\int (f(a, d) \quad \lambda_{B \to D}(d, e))$$

$$\int (f(a, d) \quad \lambda_{B \to D}(d, e))$$

$$\int (f(a, d) \quad \lambda_{B \to D}(d, e)$$

$$\int (f(a, d) \quad \lambda_{B \to D}(d, e))$$

$$\int (f(a, d) \quad \lambda_{B \to$$

L = lower bound

[Dechter and Rish, 2003]

Properties of MBE(i)

- **Complexity**: *O*(*r exp*(*i*)) time and *O*(*exp*(*i*)) space
- Yields a lower-bound and an upper-bound
- Accuracy: determined by upper/lower (U/L) bound
- Possible use of mini-bucket approximations:
 - As anytime algorithms
 - As heuristics in search
- Other tasks (similar mini-bucket approximations):
 - Belief updating, Marginal MAP, MEU, WCSP, MaxCSP
 [Dechter and Rish, 1997], [Liu and Ihler, 2011], [Liu and Ihler, 2013]

Outline

- Introduction
- Inference

Bounds and heuristics

- Basics of search: DFS versus BFS
- Mini-Bucket Elimination
- Weighted Mini-Buckets and Iterative Cost-Shifting
- Generating Heuristics using Mini-Bucket Elimination
- AND/OR Search
- Exploiting parallelism
- Software

Cost-Shifting

(Reparameterization)

 $-\lambda(\mathbf{B})$

		$+\lambda$	(B)
Α	В	f(A,B)	
b	b	6 + 3	
b	g	0 - 1	
g	b	0 + 3	
g	g	6 - 1	

B	$\lambda({ extbf{B}})$
b	3
g	-1

Α	В	С	f(A,B,C)	
b	b	b	12	
b	b	g	6	
b	g	b	0	
b	g	g	6	=
g	b	b	6	
g	b	g	0	
g	g	b	6	
g	g	g	12	

B	С	f(B,C)
b	b	6 - 3
b	g	0 - 3
g	b	0 + 1
g	g	6 + 1

0 + 6

Modify the individual functions

- but -

keep the sum of functions unchanged

$$F^* = \min_x \sum_{\alpha} f_{\alpha}(x) \ge \sum_{\alpha} \min_x f_{\alpha}(x)$$

- Bound solution using decomposed optimization
- Solve independently: optimistic bound

$$F^* = \min_{x} \sum_{\alpha} f_{\alpha}(x) \qquad \geq \max_{\lambda_{i \to \alpha}} \sum_{\alpha} \min_{x} \left[f_{\alpha}(x) + \sum_{i \in \alpha} \lambda_{i \to \alpha}(x_i) \right]$$

- Bound solution using decomposed optimization
- Solve independently: optimistic bound
- Tighten the bound by reparameterization
 - Enforce lost equality constraints via Lagrange multipliers

$$F^* = \min_{x} \sum_{\alpha} f_{\alpha}(x) \qquad \geq \max_{\lambda_{i \to \alpha}} \sum_{\alpha} \min_{x} \left[f_{\alpha}(x) + \sum_{i \in \alpha} \lambda_{i \to \alpha}(x_i) \right]$$

Many names for the same class of bounds:

- Dual decomposition [Komodakis et al. 2007]
- TRW, MPLP [Wainwright et al. 2005, Globerson & Jaakkola 2007]
- Soft arc consistency [Cooper & Schiex 2004]
- Max-sum diffusion [Warner 2007]

$$F^* = \min_{x} \sum_{\alpha} f_{\alpha}(x) \qquad \geq \max_{\lambda_{i \to \alpha}} \sum_{\alpha} \min_{x} \left[f_{\alpha}(x) + \sum_{i \in \alpha} \lambda_{i \to \alpha}(x_i) \right]$$

Many ways to optimize the bound:

- Sub-gradient descent [Komodakis et al. 2007; Jojic et al. 2010]
- Coordinate descent [Warner 2007; Globerson & Jaakkola 2007; Sontag et al. 2009; Ihler et al. 2012]
- Proximal optimization [Ravikumar et al. 2010]
- ADMM [Meshi & Globerson 2011; Martins et al. 2011; Forouzan & Ihler 2013]

 $\min_{a,c,b} \left[f(a,b) + f(b,c) - \lambda_{B \to C}(a,c) \right] = 0$ $\min_{d,e,b} \left[f(b,d) + f(b,e) - \lambda_{B \to D}(d,e) \right] = 0$

$$\min_{a,c,b} \left[f(a,b) + f(b,c) - \lambda_{B \to C}(a,c) \right] = 0$$
$$\min_{d,e,b} \left[f(b,d) + f(b,e) - \lambda_{B \to D}(d,e) \right] = 0$$
$$\min_{a,e,c} \left[\lambda_{B \to C}(a,c) + f(a,c) + f(c,e) - \lambda_{C \to E}(a,e) \right] = 0$$

$$\begin{split} \min_{a,c,b} \left[f(a,b) + f(b,c) - \lambda_{B \to C}(a,c) \right] &= 0\\ \min_{d,e,b} \left[f(b,d) + f(b,e) - \lambda_{B \to D}(d,e) \right] &= 0\\ \min_{a,e,c} \left[\lambda_{B \to C}(a,c) + f(a,c) + f(c,e) \\ &- \lambda_{C \to E}(a,e) \right] &= 0\\ \min_{a,d} \left[f(a,d) + \lambda_{B \to D}(d,e) \\ &- \lambda_{D \to E}(a,e) \right] &= 0 \end{split}$$

$$\begin{split} \min_{a,c,b} \left[f(a,b) + f(b,c) - \lambda_{B \to C}(a,c) \right] &= 0\\ \min_{d,e,b} \left[f(b,d) + f(b,e) - \lambda_{B \to D}(d,e) \right] &= 0\\ \min_{a,e,c} \left[\lambda_{B \to C}(a,c) + f(a,c) + f(c,e) \\ &- \lambda_{C \to E}(a,e) \right] &= 0\\ \min_{a,d} \left[f(a,d) + \lambda_{B \to D}(d,e) \\ &- \lambda_{D \to E}(a,e) \right] &= 0\\ \min_{a,e} \left[\lambda_{C \to E}(a,e) + \lambda_{D \to E}(a,e) \\ &- \lambda_{E \to A}(a) \right] &= 0 \end{split}$$

$$\begin{split} \min_{a,c,b} \left[f(a,b) + f(b,c) - \lambda_{B \to C}(a,c) \right] &= 0\\ \min_{d,e,b} \left[f(b,d) + f(b,e) - \lambda_{B \to D}(d,e) \right] &= 0\\ \\ \min_{a,e,c} \left[\lambda_{B \to C}(a,c) + f(a,c) + f(c,e) \\ &- \lambda_{C \to E}(a,e) \right] &= 0\\ \\ \\ \min_{a,d} \left[f(a,d) + \lambda_{B \to D}(d,e) \\ &- \lambda_{D \to E}(a,e) \right] &= 0\\ \\ \\ \\ \min_{a,e} \left[\lambda_{C \to E}(a,e) + \lambda_{D \to E}(a,e) \\ &- \lambda_{E \to A}(a) \right] &= 0 \end{split}$$

- Downward pass as cost-shifting
- Can also do cost-shifting within mini-buckets
- "Join graph" message passing
- "Moment matching" version: one message update within each bucket during downward sweep.

anytime - mpe(\mathcal{E})

Initialize : $i = i_0$

While time and space resources are available

 $i \leftarrow i + i_{step}$

 $U \leftarrow$ upper bound computed by *approx - mpe(i)* $L \leftarrow$ lower bound computed by *approx - mpe(i)* keep the best solution found so far

if $1 \le \frac{U}{L} \le 1 + \varepsilon$, return solution

end

return the largest L and the smallest U

[Dechter and Rish, 2003]

- Can tighten the bound in various ways
 - Cost-shifting (improve consistency between cliques)
 - Increase i-bound (higher order consistency)
- Simple moment-matching step improves bound significantly

- Can tighten the bound in various ways
 - Cost-shifting (improve consistency between cliques)
 - Increase i-bound (higher order consistency)
- Simple moment-matching step improves bound significantly

- Can tighten the bound in various ways
 - Cost-shifting (improve consistency between cliques)
 - Increase i-bound (higher order consistency)
- Simple moment-matching step improves bound significantly

Weighted Mini-Bucket

(for summation bounds)

Exact bucket elimination:

 $\int f(x)$ $\lambda_B(a, c, d, e) = \sum \left[f(a, b) \cdot f(b, c) \cdot f(b, d) \cdot f(b, e) \right]$ $\underbrace{f(a,b) \quad f(b,c)}_{\swarrow} \underbrace{f(b,d)}_{\rightthreetimes}$ bucket B: f(b, e) $\leq \left[\sum_{i=1}^{w_1} f(a,b)f(b,c)\right] \cdot \left[\sum_{i=1}^{w_2} f(b,d)f(b,e)\right]$ bucket C: $\lambda_{B \to C}(a, c) f(a, c) f(c, e)$ $=\lambda_{B\to C}(a,c) \qquad \cdot \lambda_{B\to D}(d,e)$ (mini-buckets) $\underbrace{f(a,d) \ \lambda_{B \to D}(d,e)}_{|}$ where $\sum f(x) = \left[\sum f(x)^{1/w}\right]^w$ bucket D: is the weighted or "power" sum operator $\underbrace{\lambda_{C \to E}(a, e)}_{\longleftarrow} \lambda_{D \to E}(a, e)$ bucket E: By Holder's inequality, $\underbrace{f(a) \quad \lambda_{E \to A}(a)}_{I}$ $\sum_{n=1}^{w} f_1(x) f_2(x) \le \left[\sum_{n=1}^{w} f_1(x)\right] \left[\sum_{n=1}^{w} f_2(x)\right]$ ↓ bucket A: where $w_1 + w_2 = w$ and $w_1 > 0, w_2 > 0$ U = upper bound (lower bound if $w_1 > 0, w_2 < 0$) **IJCAI 2015**

[Liu & Ihler 2011]

mini-buckets

Weighted Mini-Bucket

- Related to conditional entropy decomposition [Globerson & Jaakkola 2008] but, with an efficient, "primal" bound form
- We can optimize the bound over:
 - Cost-shifting
 - Weights
- Again, involves message passing on JG
- Similar, one-pass "moment matching" variant

IJCAI 2015

[Liu & Ihler 2011]

WMB for Marginal MAP

Weighted mini-bucket is applicable more generally, since

$$\sum_{x}^{w} f(x) = \left[\sum_{x} f(x)^{1/w}\right]^{w} \Longrightarrow \begin{cases} \lim_{w \to 0^{+}} \sum_{x}^{w} f(x) = \max_{x} f(x) & (f(x) \ge 0) \\ \lim_{w \to 0^{-}} \sum_{x}^{w} f(x) = \min_{x} f(x) & (w = \text{``temperature''}) \end{cases}$$

So, when w=0+, WMB reduces to max-inference.

For marginal MAP problems, just use different w's: $\max_{x_B} \sum_{x_A} \prod_j f_j(x) = \sum_{x_B}^{0^+} \sum_{x_A}^{1} \prod_j f_j(x)$

WMB for Marginal MAP

$$\lambda_{B \to C}(a, c) = \sum_{b}^{w_1} f(a, b) f(b, c)$$

$$\lambda_{B \to D}(d, e) = \sum_{b}^{w_2} f(b, d) f(b, e)$$

$$(w_1 + w_2 = 1)$$

$$\vdots$$

$$\lambda_{E \to A}(a) = \max_{e} \lambda_{C \to E}(a, e) \lambda_{D \to E}(a, e)$$

$$U = \max_{a} f(a) \lambda_{E \to A}(a)$$
Marginal MAP:

$$\sum_{b}$$
bucket B:

$$\int (a, b) - f(b, c)$$

$$f(b, d) - f(b, e)$$
bucket C:

$$\lambda_{B \to C}(a, c) f(a, c) - f(c, e)$$
bucket D:

$$\int (a, d) \lambda_{B \to D}(d, e)$$
bucket E:

$$\lambda_{C \to E}(a, e) - \lambda_{D \to E}(a, e)$$
bucket A:

$$\int (a, d) \lambda_{E \to A}(a)$$

$$\max_{a}$$
bucket A:

$$\int (a, d) \lambda_{E \to A}(a)$$

$$\max_{a}$$
bucket A:

$$\int (a, d) \lambda_{E \to A}(a)$$

$$\int$$

Can optimize over cost-shifting and weights (single-pass "MM" or with iterative message passing) IJCAI 2015

[Liu & Ihler 2011, 2013]

maine la sel cette

Outline

- Introduction
- Inference

Bounds and heuristics

- Basics of search: DFS versus BFS
- Mini-Bucket Elimination
- Weighted Mini-Buckets and Iterative Cost-Shifting
- Generating Heuristics using Mini-Bucket Elimination
- AND/OR Search
- Exploiting parallelism
- Software

Generating Heuristics for Graphical Models

Given a cost function:

 $f(a, \dots, e) = f(a) + f(a, b) + f(a, c) + f(a, d) + f(b, c) + f(b, d) + f(b, e) + f(c, e)$

define an evaluation function over a partial assignment as the cost of its best extension:

Static Mini-Bucket Heuristics

Properties of the Heuristic

- MB heuristic is monotone, admissible
- Computed in linear time

• IMPORTANT

- Heuristic strength can vary by MB(i)
- Higher i-bound \rightarrow more pre-processing \rightarrow more accurate heuristic \rightarrow less search
- Allows controlled trade-off between preprocessing and search

Dynamic Mini-Bucket Heuristics

- Rather than pre-compile, compute the heuristics, dynamically, during search
- **Dynamic MB**: use the Mini-Bucket algorithm to produce a bound for any node during search
- **Dynamic MBTE**: compute heuristics simultaneously for all un-instantiated variables using Mini-Bucket-Tree Elimination (MBTE)
- MBTE is an approximation scheme defined over cluster trees. It outputs multiple bounds for each variable and value extension at once

[Marinescu, Kask and Dechter, 2003] IJCAI 2015

Outline

- Introduction
- Inference
- Bounds and heuristics
- AND/OR Search
- Exploiting parallelism
- Software
Outline

- Introduction
- Inference
- Bounds and heuristics

AND/OR Search

- AND/OR Search Spaces
- AND/OR Branch and Bound
- Best-First AND/OR Search
- Advanced Searches and Tasks
- Exploiting parallelism
- Software

Solution Techniques

IJCAI 2015

Classic OR Search Space

$A B f_1$	$A C f_2$	A E f ₃	A F f_4 B C f_5	B D f ₆	B E f ₇	C D f ₈	E F f ₉
0 0 2	0 0 3	0 0 0	0 0 2 0 0 0	0 0 4	0 0 3	0 0 1	0 0 1
0 1 0	0 1 0	0 1 3	0 1 0 0 1 1	0 1 2	0 1 2	0 1 4	0 1 0
101	100	1 0 2	1002	101	1 0 1	100	100
1 1 4	1 1 1	1 1 0	1 1 2 1 1 4	1 1 0	1 1 0	1 1 0	1 1 2

Objective function:
$$F^* = \min_X \sum_i f_i(X)$$

[Dechter and Mateescu, 2007]

IJCAI 2015

Weighted AND/OR Search Tree

AND/OR versus OR Spaces

AND/OR versus OR Spaces

width	depth	OR space		А	ND/OR space	
		Time (sec)	Nodes	Time (sec)	AND nodes	OR nodes
5	10	3.15	2,097,150	0.03	10,494	5,247
4	9	3.13	2,097,150	0.01	5,102	2,551
F	10	2 1 2	2 007 150	0.02	0.020	4 460
5	10	3.12	2,097,150	0.03	8,920	4,403
4	10	3.12	2,097,150	0.02	7,806	3,903
			, ,		•	,
5	13	3.11	2,097,150	0.10	36,510	18,255

Random graphs with 20 nodes, 20 edges and 2 values per node

Complexity of AND/OR Tree Search

	AND/OR tree	OR tree
Space	O(n)	O(n)
Time	$O(n d^t)$	
	$O(n d^{(w^* \log n)})$	$O(d^n)$
	[Freuder & Quinn85], [Collin, Dechter & Katz91], [Bayardo & Miranker95], [Darwiche01]	

d = domain size t = depth of pseudo tree n = number of variables
w* = induced width

Constructing Pseudo Trees

- AND/OR serch algorithms are influenced by the quality of the pseudo tree
- Finding minimal induced width / depth pseudo tree is NP-hard
- Heuristics
 - Min-Fill (min induced width)
 - Hypergraph partitioning (min depth)

Constructing Pseudo Trees

• Min-Fill [Kjaerulff, 1990]

- Depth-first traversal of the induced graph obtained along the min-fill elimination order heuristic
- Variables ordered according to smallest "fill-set"
- Hypergraph Partitioning [Karypis and Kumar, 2000]
 - Functions are vertices in the hypergraph and variables are hyperedges
 - Recursive decomposition of the hypergraph while minimizing the separator size at each step
 - Using state-of-the-art software package hMeTiS

Quality of the Pseudo Trees

Network	hypergraph		mi	n-fill
	W*	depth	W*	depth
barley	7	13	7	23
diabetes	7	16	4	77
link	21	40	15	53
mildew	5	9	4	13
munin1	12	17	12	29
munin2	9	16	9	32
munin3	9	15	9	30
munin4	9	18	9	30
water	11	16	10	15
pigs	11	20	11	26

Bayesian Networks Repository

Network	hypergraph		mi	n-fill
	W*	depth	W*	depth
spot5	47	152	39	204
spot28	108	138	79	199
spot29	16	23	14	42
spot42	36	48	33	87
spot54	12	16	11	33
spot404	19	26	19	42
spot408	47	52	35	97
spot503	11	20	9	39
spot505	29	42	23	74
spot507	70	122	59	160

SPOT5 Benchmark

From Search Trees to Search Graphs

 Any two nodes that root identical subtrees or subgraphs can be merged

From Search Trees to Search Graphs

 Any two nodes that root identical subtrees or subgraphs can be merged

Merging Based on Contexts

- One way of recognizing nodes that can be merged (based on the graph structure)
 - context(X) = ancestors of X in the pseudo tree that are connected to X or to descendants of X

AND/OR Search Graph

IJCAI 2015

How Big Is The Context?

• **Theorem**: The maximum context size for a pseudo tree is equal to the treewidth of the graph along the pseudo tree.

Complexity of AND/OR Graph Search

IJCAI 2015

All Four Search Spaces

Outline

- Introduction
- Inference
- Bounds and heuristics

AND/OR Search

- AND/OR Search Spaces
- AND/OR Branch and Bound
- Best-First AND/OR Search
- Advanced Searches and Tasks
- Exploiting parallelism
- Software

Classic Depth-First Branch and Bound

(UB) Upper Bound = best solution so far

Each node is a COP subproblem (defined by current conditioning)

g(n) : cost of the path from root to n $\tilde{f}(n) = g(n) + \tilde{h}(n)$ (lower bound)

Prune if $\tilde{f}(n) \ge UB$

 $ilde{h}(n)$: under-estimates optimal cost below n

Partial Solution Tree

Extension(T') – solution trees that extend T'

Exact Evaluation Function

	В	С	f ₁ (ABC)	Α	В	F	f ₂ (AE
)	0	0	2	0	0	0	3
)	0	1	5	0	0	1	5
)	1	0	3	0	1	0	1
)	1	1	5	0	1	1	4
	0	0	9	1	0	0	6
	0	1	3	1	0	1	5
	1	0	7	1	1	0	6
	1	1	2	1	1	1	5

	В	D	Е	f ₃ (BDE)
	0	0	0	6
	0	0	1	4
	0	1	0	8
	0	1	1	5
	1	0	0	9
	1	0	1	3
	1	1	0	7
	1	1	1	4

 $f^{*}(T') = w(A,0) + w(B,1) + w(C,0) + w(D,0) + v(D,0) + v(F)$ IJCAI 2015

Exact Evaluation Function

f₂(AE

5

6

5 6

Α	В	С	f ₁ (ABC)	Α	В
0	0	0	2	0	0
0	0	1	5	0	0
0	1	0	3	0	1
0	1	1	5	0	1
1	0	0	9	1	0
1	0	1	3	1	0
1	1	0	7	1	1
1	1	1	2	1	1

BF)	В	D	Е	f ₃ (BDE
	0	0	0	6
	0	0	1	4
	0	1	0	8
	0	1	1	5
	1	0	0	9
	1	0	1	3
	1	1	0	7
	1	1	1	4

 $f(T') = w(A,0) + w(B,1) + w(C,0) + w(D,0) + h(D,0) + h(F) = 12 \le f^{*}(T')$ IJCAI 2015

AND/OR Branch and Bound Search

IJCAI 2015

AND/OR Branch and Bound (AOBB)

- Associate each node n with a heuristic lower bound h(n) on v(n)
- EXPAND (top-down)
 - Evaluate f(T') and prune search if $f(T') \ge UB$
 - Generate successors of the tip node n
- UPDATE (bottom-up)
 - Update value of the parent p of n
 - OR nodes: minimization
 - AND nodes: summation

[Marinescu and Dechter, 2005; 2009]

AND/OR Branch and Bound with Caching

- Associate each node n with a heuristic lower bound h(n) on v(n)
- EXPAND (top-down)
 - Evaluate f(T') and prune search if $f(T') \ge UB$
 - If not in cache, generate successors of the tip node n
- UPDATE (bottom-up)
 - Update value of the parent p of n
 - OR nodes: minimization
 - AND nodes: summation
 - Cache value of **n** based on context

IJCAI 2015

[Marinescu and Dechter, 2006; 2009]

- AND/OR decomposition vs. depth-first search:
 - Compromises anytime property of AOBB.

- AND/OR decomposition vs. depth-first search:
 - Compromises anytime property of AOBB.
- Breadth-Rotating AOBB:
 - Combined breadth/depth-first schedule.
 - Maintains depth-first complexity.
 - Superior experimental results.

processing

solved optimally

- AND/OR decomposition vs. depth-first search:
 - Compromises anytime property of AOBB.
- Breadth-Rotating AOBB:
 - Combined breadth/depth-first schedule.
 - Maintains depth-first complexity.
 - Superior experimental results.

- AND/OR decomposition vs. depth-first search:
 - Compromises anytime property of AOBB.
- Breadth-Rotating AOBB:
 - Combined breadth/depth-first schedule.
 - Maintains depth-first complexity.
 - Superior experimental results.

- AND/OR decomposition vs. depth-first search:
 - Compromises anytime property of AOBB.
- Breadth-Rotating AOBB:
 - Combined breadth/depth-first schedule.
 - Maintains depth-first complexity.
 - Superior experimental results.

- AND/OR decomposition vs. depth-first search:
 - Compromises anytime property of AOBB.
- Breadth-Rotating AOBB:
 - Combined breadth/depth-first schedule.
 - Maintains depth-first complexity.
 - Superior experimental results.
- Won PASCAL'11 Inference Challenge MPE track.

Mini-Bucket Heuristics for AND/OR Search

- The depth-first and best-first AND/OR search algorithms use h(n) that can be computed:
 - Static Mini-Bucket Heuristics
 - Pre-compiled
 - Reduced computational overhead
 - Less accurate
 - Static variable ordering
 - Dynamic Mini-Bucket Heuristics
 - Computed dynamically, during search
 - Higher computational overhead
 - High accuracy
 - Dynamic variable ordering

Bucket Elimination

Ordering: (A, B, C, D, E, F, G)

Exact evaluation of (A=a, B=b) below C: $h^*(a, b, C) = h^{D}(a, b, C) + h^{E}(b, C)$

Static Mini-Bucket Heuristics

IJCAI 2015

h(a, b, C) = h^D(C) + h^E(C) = h*(a, b, C)

Ordering: (A, B, C, D, E, F, G)

Dynamic Variable Orderings

- Variable ordering heuristics
 - Semantic-based
 - Aim at shrinking the size of the search space based on context and current value assignments
 - e.g., min-domain, min-dom/wdeg, min reduced cost
 - Graph-based
 - Aim at maximizing the problem decomposition
 - e.g., pseudo tree arrangement

Partial Variable Orderings (PVO)

Variable Groups/Chains:

- {A,B}
- {C,D}
- {E,F}

Instantiate {A,B} before {C,D} and {E,F}

*{A,B} is a separator/chain

Variables on **chains** in the pseudo tree can be instantiated dynamically, based on some semantic ordering heuristic

* Similar idea is exploited by **BTD** (Backtracking with Tree Decomposition) [Jegou and Terrioux, 2004]

Full Dynamic Variable Ordering (DVO)

Dynamic Separator Ordering (DSO)

Constraint Propagation may create **singleton** variables in **P1** and **P2** (changing the problem's structure), which in turn may yield smaller separators

* Similar idea exploited in SAT [Li and val Beek, 2004]

Backtrack with Tree Decomposition

BTD:

- AND/OR graph search (caching on separators)
- Partial variable ordering (dynamic inside clusters)
- Maintaining local consistency

Backtrack with Tree Decomposition

- Before the search
 - Merge clusters with a separator size > p
 - Time O(k exp(w*)), Space O(exp(p))
 - More freedom for variable ordering heuristics
- Properties
 - BTD(-1) is Depth-First Branch and Bound
 - BTD(0) solves connected components independently
 - BTD(1) exploits bi-connected components
 - BTD(s) is Backtrack with Tree Decomposition

(s: largest separator size)

Outline

- Introduction
- Inference
- Bounds and heuristics

AND/OR Search

- AND/OR Search Spaces
- AND/OR Branch and Bound
- Best-First AND/OR Search
- Advanced Searches and Tasks
- Exploiting parallelism
- Software

Outline

- Introduction
- Inference
- Bounds and heuristics

AND/OR Search

- AND/OR Search Spaces
- AND/OR Branch and Bound
- Best-First AND/OR Search
- Advanced Searches and Tasks
- Exploiting parallelism
- Software

Basic Heuristic Search Schemes

Heuristic function $\tilde{f}(\hat{x}_p)$ computes a lower bound on the best extension of partial configuration \hat{x}_p and can be used to guide heuristic search. We focus on:

1. Branch-and-Bound

Use heuristic function $\tilde{f}(\hat{x}_p)$ to prune the depth-first search tree Linear space

2. Best-First Search

Always expand the node with the lowest heuristic value $\tilde{f}(\hat{x}_p)$ Needs lots of memory

Best-First Principle

- Best-first search expands first the node with the best heuristic evaluation function among all nodes encountered so far
- Never expands nodes whose cost is beyond the optimal one, unlike depth-first algorithms [Dechter and Pearl, 1985]
- Superior among memory intensive algorithms employing the same heuristic evaluation function

Best-First AND/OR Search (AOBF)

• Maintains the explicated AND/OR search graph in memory

Top-Down Step (EXPAND)

- Trace down marked connectors from root
 - E.g., best partial solution tree
- Expand a tip node n by generating its successors n'
- Associate each successor with heuristic estimate h(n')
 - Initialize q(n) = h(n') (q-value q(n) is a lower bound on v(n)

Bottom-Up Step (UPDATE)

- Update node values q(n)
 - OR nodes: minimization
 - AND nodes: summation
- Mark the most promissing partial solution tree from the root
- Label the nodes as SOLVED:
 - OR node is SOLVED if marked child is SOLVED
 - AND node is SOLVED if all children are SOLVED
- Terminate when root node is SOLVED

[Marinescu and Dechter, 2006; 2009]

AOBF versus AOBB

- **AOBF** with the same heuristic as **AOBB** is likely to expand the smallest search space
 - This translates into significant time savings
- **AOBB** can use far less memory by avoiding for example dead-caches, whereas **AOBF** keeps in memory the explicated search graph
- **AOBB** is anytime, whereas **AOBF** is not

Recursive Best-First AND/OR Search

- AND/OR search algorithms (AOBB and AOBF)
 - AOBB (depth-first): memory efficient but may explore many suboptimal subspaces
 - AOBF (best-first): explores the smallest search space but may require huge memory
- Recursive best-first search for AND/OR graphs
 - Requires limited memory (even linear)
 - Nodes are explored in best-first order
 - Main issue: some nodes will be re-expanded (want to minimize this)

Recursive Best-First AND/OR Search

- Transform best-first search (AO* like) into depth-first search using a threshold controlling mechanism (explained next)
 - Based on Korf's classic RBFS
 - Adapted to the context minimal AND/OR graph
- Nodes are still expanded in **best-first order**
- Node values are updated in the usual manner based on the values of their successors
 - OR nodes by minimization
 - AND nodes by summation
- Some nodes will be re-expanded
 - Use caching (limited memory) based on contexts
 - Use overestimation of the threshold to minimize node re-expansions

- Expand OR node A by generating its AND successors: (A,0) and (A,1)
- Best successor is (A,0)
- Set threshold $\theta(A,0) = 4 \text{ indicates next best successor is } (A,1)$
 - We can backtrack to (A,1) if the updated cost of the subtree below (A,0) exceeds the threshold $\theta = 4$

- Expand AND node (A,0) by generating its OR successors: B and C
- Update node value q(A,0) = h(B) + h(C) = 3 threshold OK

- Expand OR node B by generating its AND successor: (B,0)
- Update node values q(B) = 4 and q(A,0) = 6 threshold NOT OK

- Backtrack to (A,0) and select next best node (A,1)
- Set threshold $\theta(A,1) = 6$ (updated value of the left subtree)
- Cache (minimize re-expansion) or discard left subtree

- Some of the nodes in the subtree below (A,0) may be re-expanded
- Simple overestimation scheme for minimizing the node re-expansions
- Inflate the threshold with some small δ : $\theta' = \theta + \delta$ ($\delta > 0$)
 - In practice, we determine δ experimentally (e.g., δ = 1 worked best)

Empirical Evaluation

Grid and Pedigree benchmarks; Time limit 1 hour.

Outline

- Introduction
- Inference
- Bounds and heuristics

AND/OR Search

- AND/OR Search Spaces
- AND/OR Branch and Bound
- Best-First AND/OR Search
- Advanced Searches and Tasks
- Exploiting parallelism
- Software

Marginal MAP

- Occurs in many applications involving hidden variables
- Seeks a partial configuration of variables with maximum marginal probability
- Complexity: NPPP-complete
- State-of-the-art is DFS BnB (over the MAP variables)
 - Guided by unconstrained join-tree based upper bounds
- Advances
 - AND/OR Branch and Bound and Best-First AND/OR Search algorithms
 - Heuristics based on Weighted Mini-Buckets
 - WMB-MM: single pass with cost-shifting by moment matching
 - WMB-JG: iterative updates by message passing along the join-graph

Marginal MAP

- Occurs in many applications involving hidden variables
- Seeks a partial configuration of variables with maximum marginal probability
- Complexity: NPPP-complete
- State-of-the-art is DFS BnB (over the MAP variables)
 - Guided by unconstrained join-tree based upper bounds
- Advances
 - AND/OR Branch and Bound and Best-First AND/OR Search algorithms
 - Heuristics based on Weighted Mini-Buckets
 - WMB-MM: single pass with cost-shifting by moment matching
 - WMB-JG: iterative updates by message passing along the join-graph

AND/OR Search Space for MMAP

constrained pseudo tree

AND/OR Search Space for MMAP

- Node types
 - OR (MAP): max
 - OR (SUM): sum
 - AND: multiplication
- Arc weights
 - derived from input F
- Problem decomposition
 over MAP variables

AND/OR Search Algorithms

• AOBB: Depth-First AND/OR Branch and Bound

- Depth-first traversal of the AND/OR search graph
- Prune only at OR nodes that correspond to MAP variables
- Cost of MAP assignment obtained by searching the SUM sub-problem

• AOBF: Best First AND/OR Search

- Best-first (AO*) traversal of the AND/OR space corresponding to the MAP variables
- SUM subproblem solved exactly

• **RBFAOO: Recursive Best-First AND/OR Search**

- Recursive best-first traversal of the AND/OR graph
- For SUM subproblems, the threshold is set to ∞ (equivalent to depth-first search)

[Marinescu, Dechter and Ihler; 2014; 2015]

Quality of the Upper Bounds

Average relative error wrt tightest upper bound. 10 iterations for WMB-JG(i).

AOBB versus BB

Number of instances solved and median CPU time (sec). 10 iterations for WMB-JG(i).

AOBF/RBFAOO versus AOBB

Number of instances solved and median CPU time (sec). Time limit 1 hour.

Searching for M Best Solutions

- New inference and search based algorithms for the task of finding the m best solutions
 - Search: m-A*, m-BB
 - Inference: elim-m-opt, BE+m-BF
- Extended m-A* and m-BB to AND/OR search spaces for graphical models, yielding m-AOBB and m-AOBF
- Competitive and often superior to alternative (approximate) approaches based on LP relaxations
 - e.g., [Fromer and Globerson, 2009], [Batra, 2012]

IJCAI 2015

[Dechter, Flerova and Marinescu; 2012]

Searching for M Best Solutions

Empirical Evaluation

Grid instances; Time limit = 3h; Memory bound = 4 GB

Hybrid of Variable Elimination and Search

• Tradeoff space and time

Search Basic Step: Conditioning

Variable Branching by Conditioning

Search Basic Step: Conditioning

Variable Branching by Conditioning

Select a variable

Search Basic Step: Conditioning

Variable Branching by Conditioning

Search Basic Step: Conditioning

Variable Branching by Conditioning

Space: exp(i), Time: O(exp(i+c(i))

IJCAI 2015

Eliminate First

Eliminate First

Eliminate First

Hybrid Variants

- **Condition**, **condition**, **condition**, ... and then only eliminate (w-cutset, cycle-cutset)
- Eliminate, eliminate, eliminate, ... and then only search
- Interleave conditioning and elimination steps (elim-cond(i), VE+C)

IJCAI 2015

IJCAI 2015

IJCAI 2015

Boosting Search with Variable Elimination

- At each search node
 - Eliminate all unassigned variables with degree $\leq p$
 - Select an assigned variable A
 - Branch on the values of A
- Properties
 - BB+VE(-1) is Depth-First Branch and Bound
 - BB+VE(w) is Variable Elimination
 - BB+VE(1) is similar to Cycle-Cutset
 - BB+VE(2) is well suited with soft local consistencies (add binary constraints only, independent of elimination order)

Mendelian Error Detection

- Given a pedigree and partial observations (genotypings)
- Find the erroneous genotypings, such that their removal restores consistency

- Checking consistency is NP-complete [Aceto et al, 2004]
- Minimize the number of genotypings to be removed
- Maximize the joint probability of true genotypes (MPE/MAP)

Pedigree problem size: $n \le 20,000$; k = 3-66; $e(3) \le 30,000$

IJCAI 2015

[Sanchez et al, 2008]

Pedigree

- toulbar2 v0.5 with EDAC and binary branching
- Minimize the number of genotypings to be removed
- CPU time to find and prove optimality on a 3 GHz computer with 16 GB

Outline

- Introduction
- Inference
- Bounds and heuristics
- AND/OR Search
- Exploiting parallelism
- Software

Outline

- Introduction
- Inference
- Search
- Lower bounds and relaxations
- Exploiting parallelism
 - Distributed and parallel search
- Software

Contributions

- Propose parallel AOBB, first of its kind.
 - Runs on computational grid.
 - Extends parallel tree search paradigm.
 - Two variants with different parallelization logic.
- Analysis of schemes' properties:
 - Performance considerations and trade-offs.
 - Granularity vs. overhead and redundancies.
- Large-scale experimental evaluation:
 - Good parallel performance in many cases.
 - Analysis of some potential performance pitfalls.

- Task parallelism (vs. data parallelism):
 - Extensive computation on small input.

- Task parallelism (vs. data parallelism):
 - Extensive computation on small input.
- Computational grid framework:
 - Independent hosts, limited or no communication.

- Task parallelism (vs. data parallelism):
 - Extensive computation on small input.
- Computational grid framework:
 - Independent hosts, limited or no communication.
- Parallel tree search ("stack splitting"):
 - Typically uses shared memory for dynamic load balancing and cost bound updates for BaB.
 - Not feasible in grid setup.

- Task parallelism (vs. data parallelism):
 - Extensive computation on small input.
- Computational grid framework:
 - Independent hosts, limited or no communication.
- Parallel tree search ("stack splitting"):
 - Typically uses shared memory for dynamic load balancing and cost bound updates for BaB.
 - Not feasible in grid setup.
- Motivation: Superlink Online.
 - Distributed linkage (likelihood) computation.

[A]

В

- Algorithm receives cutoff depth *d* as input:
 - Expand nodes centrally until depth *d*.
 - At depth *d*, submit to grid job queue.

- Algorithm receives cutoff depth *d* as input:
 - Expand nodes centrally until depth d.
 - At depth *d*, submit to grid job queue.

- Algorithm receives cutoff depth *d* as input:
 - Expand nodes centrally until depth d.
 - At depth *d*, submit to grid job queue.
- Explored subproblem search spaces potentially very unbalanced.

- Algorithm receives cutoff depth *d* as input:
 - Expand nodes centrally until depth d.
 - At depth *d*, submit to grid job queue.
- Explored subproblem search spaces potentially very unbalanced.

Fixed-depth Parallel AOBB

- Algorithm receives cutoff depth *d* as input:
 - Expand nodes centrally until depth d.
 - At depth *d*, submit to grid job queue.
- Explored subproblem search spaces potentially very unbalanced.

- Given subproblem count *p* and estimator *N* :
 - Iteratively deepen frontier until size *p* reached:
 - Pick subproblem n with largest estimate N(n) and split.
 - Submit subproblems into job queue by descending complexity estimates.

- Given subproblem count *p* and estimator *N* :
 - Iteratively deepen frontier until size *p* reached:
 - Pick subproblem n with largest estimate N(n) and split.
 - Submit subproblems into job queue by descending complexity estimates.
- Hope to achieve better subproblem balance.

- Given subproblem count *p* and estimator *N* :
 - Iteratively deepen frontier until size *p* reached:
 - Pick subproblem *n* with largest estimate *N(n)* and split.
 - Submit subproblems into job queue by descending complexity estimates.
- Hope to achieve better subproblem balance.

- Given subproblem count *p* and estimator *N* :
 - Iteratively deepen frontier until size *p* reached:
 - Pick subproblem *n* with largest estimate *N(n)* and split.
 - Submit subproblems into job queue by descending complexity estimates.
- Hope to achieve better subproblem balance.

- Given subproblem count *p* and estimator *N* :
 - Iteratively deepen frontier until size *p* reached:
 - Pick subproblem *n* with largest estimate *N(n)* and split.
 - Submit subproblems into job queue by descending complexity estimates.
- Hope to achieve better subproblem balance.

Aside: Modeling AOBB Complexity

• Model number of nodes N(n) in subproblem as exp. function of subproblem features $\varphi_i(n)$:

$$N(n) = \exp(\sum_{i} \lambda_{i} \varphi_{i}(n))$$

Aside: Modeling AOBB Complexity

• Model number of nodes N(n) in subproblem as exp. function of subproblem features $\varphi_i(n)$:

$$N(n) = \exp(\sum_{i} \lambda_{i} \varphi_{i}(n))$$

- Logarithm yields *linear regression* problem.
 - Minimize MSE with Lasso regularization. [Tibshirani]

$$\frac{1}{m}\sum_{j=1}^{m}\left(\sum_{i}\lambda_{i}\varphi_{i}(n_{k})-\log N\left(n_{k}\right)\right)^{2}+\alpha\sum_{i}|\lambda_{i}|$$

- Full details:
 - "A Case Study in Complexity Estimation: Towards Parallel Branch-and-Bound over Graphical Models", UAI 2012.

35 Subproblem Features

- Characterize subproblem:
 - Static, structural properties:
 - Number of variables.
 - Avg. and max. width.
 - Height of sub pseudo tree.
 - State space bound SS.
 - Dynamic, runtime properties:
 - Upper and lower bound on subproblem cost.
 - Pruning ratio and depth of small AOBB probe.
 - only 5n nodes, very fast.

Subproblem variable statistics (static):

- 1: Number of variables in subproblem.
- 2-6: Min, Max, mean, average, and std. dev. of variable domain sizes in subproblem.

Pseudo tree depth/leaf statistics (static):

- 7: Depth of subproblem root in overall search space.
- 8-12: Min, max, mean, average, and std. dev. of depth of subproblem pseudo tree leaf nodes, counted from subproblem root.
 - 13: Number of leaf nodes in subproblem pseudo tree.

Pseudo tree width statistics (static):

- 14-18: Min, max, mean, average, and std. dev. of induced width of variables within subproblem.
- 19-23: Min, max, mean, average, and std. dev. of induced width of variables within subproblem, *conditioned on subproblem root context*.
- State space bound (static):
 - 24: State space size upper bound on subproblem search space size.

Subproblem cost bounds (dynamic):

- 25: Lower bound L on subproblem solution cost, derived from current best overall solution.
- 26: Upper bound U on subproblem solution cost, provided by mini bucket heuristics.
- 27: Difference U L between upper and lower bound, expressing "constrainedness" of the subproblem.

Pruning ratios (dynamic), based on running AOBB for 5*n* node expansions:

- 28: Ratio of nodes pruned using the heuristic.
- 29: Ratio of nodes pruned due of determinism (zero probabilities, e.g.)
- 30: Ratio of nodes corresponding to pseudo tree leaf.

AOBB sample (dynamic), based on running AOBB for 5*n* node expansions:

- 31: Average depth of terminal search nodes within probe.
- 32: Average node depth within probe (denoted \bar{d}).
- 33: Average branching degree, defined as $\sqrt[d]{5n}$.

Various (static):

- 34: Mini bucket *i*-bound parameter.
- 35: Max. subproblem variable context size minus mini bucket *i*-bound.

Example Estimation Results

- Across subproblems from several domains.
 - Hold out test data for model learning.

- Sequential AOBB performance baseline:
 - T_{seq} : sequential runtime.
 - N_{seq} : number of sequential node expansions.

- Sequential AOBB performance baseline:
 - T_{seq} : sequential runtime.
 - N_{seq} : number of sequential node expansions.
- Parallel AOBB performance metrics:
 - *T_{par}*: parallel runtime including central preprocessing.
 - S_{par} : Parallel speedup T_{seq} / T_{par} .

- Sequential AOBB performance baseline:
 - T_{seq} : sequential runtime.
 - N_{seq} : number of sequential node expansions.
- Parallel AOBB performance metrics:
 - *T_{par}*: parallel runtime including central preprocessing.
 - S_{par} : Parallel speedup T_{seq} / T_{par} .
 - N_{par} : Node expansions across all subproblems.
 - O_{par} : Relative parallel overhead N_{par} / N_{seq} .

- Sequential AOBB performance baseline:
 - T_{seq} : sequential runtime.
 - N_{seq} : number of sequential node expansions.
- Parallel AOBB performance metrics:
 - T_{par} : parallel runtime including central preprocessing.
 - S_{par} : Parallel speedup T_{seq} / T_{par} .
 - N_{par} : Node expansions across all subproblems.
 - O_{par} : Relative parallel overhead N_{par} / N_{seq} .
 - U_{par} : Avg. processor utilization, relative to longest.

Performance Considerations

- Amdahl's Law [1967]:
 - "If a fraction p of a computation can be sped up by a factor or s, the overall speedup cannot exceed 1/(1-p+p/s)."
 - Example: 20 minute computation, 30 sec preprocessing. Best speedup **40x** (regardless of parallel CPUs).

Performance Considerations

- Amdahl's Law [1967]:
 - "If a fraction p of a computation can be sped up by a factor or s, the overall speedup cannot exceed 1/(1-p+p/s)."
 - Example: 20 minute computation, 30 sec preprocessing. Best speedup **40x** (regardless of parallel CPUs).
- Implication of overhead O_{par} :
 - Proposition: assuming parallel overhead o and execution on p CPUs, speedup is bounded by p/o.
 - Example: 500 CPUs, overhead 2 \rightarrow best speedup 250.
 - In practice even lower due to load balancing, communication delay $g_{\rm CA}$

Parallel AOBB Performance Factors

- Distributed System Overhead:
 - Master preprocessing and parallelization decision.
 - Repeated preprocessing in workers (mini-buckets).
 - Communication and scheduling delays.

Parallel AOBB Performance Factors

- Distributed System Overhead:
 - Master preprocessing and parallelization decision.
 - Repeated preprocessing in workers (mini-buckets).
 - Communication and scheduling delays.
- Parallel search space redundancies:
 - Impacted pruning, lack of bounds propagation.
 - Local search for near-optimal initial bound.
 - Loss of caching across parallel subproblems.
 - Analyzed subsequently.

Parallel AOBB Performance Factors

- Distributed System Overhead:
 - Master preprocessing and parallelization decision.
 - Repeated preprocessing in workers (mini-buckets).
 - Communication and scheduling delays.
- Parallel search space redundancies:
 - Impacted pruning, lack of bounds propagation.
 - Local search for near-optimal initial bound.
 - Loss of caching across parallel subproblems.
 - Analyzed subsequently.
- Parallel AOBB is <u>not</u> "embarrassingly parallel".

Redundancy Analysis

- Definitions:
 - $w_d(X)$ is size of context of X below level d.
 - $\pi_d(X)$ is ancestor of X at level d.
- Underlying parallel search space size SS_{par}:

$$SS_{par}(d) = \sum_{j=0}^{d} \sum_{X' \in L_j} k^{w(X')+1} + \sum_{j=d+1}^{h} \sum_{X' \in L_j} k^{w(\pi_d(X'))+w_d(X')+1}$$

- Definitions:
 - $w_d(X)$ is size of context of X below level d.
 - $\pi_d(X)$ is ancestor of X at level d.
- Underlying parallel search space size SS_{par}:

$$SS_{par}(d) = \sum_{j=0}^{d} \sum_{X' \in L_j} k^{w(X')+1} + \sum_{j=d+1}^{h} \sum_{X' \in L_j} k^{w(\pi_d(X'))+w_d(X')+1}$$

- Definitions:
 - $w_d(X)$ is size of context of X below level d.
 - $\pi_d(X)$ is ancestor of X at level d.
- Underlying parallel search space size SS_{par}:

- Definitions:
 - $w_d(X)$ is size of context of X below level d.
 - $\pi_d(X)$ is ancestor of X at level d.
- Underlying parallel search space size SS_{par}:

- Definitions:
 - $w_d(X)$ is size of context of X below level d.
 - $\pi_d(X)$ is ancestor of X at level d.
- Underlying parallel search space size SS_{par}:

- $-SS_{par}(0) = SS_{par}(h) = SS_{seq}.$
- $-SS_{par}(d) \geq SS_{par}(0) \text{ for all } d.$

- Assume parallelism with sufficient CPUs.
 - Consider conditioning space + max. subproblem.

Example revisited:	d							
	0	1	2	3	4	5		
parallel space $SS_{par}(d)$	50	78	102	70	50	50		
conditioning space	0	2	6	22	38	50		
no. of subproblems	1	2	8	8	6	0		
max. parallel subproblem	50	38	14	6	2	_		
cond. space + max. subprob	50	40	20	28	40	50		

- Assume parallelism with sufficient CPUs.
 - Consider conditioning space + max. subproblem.

Example revisited:	d						
	0	1	2	3	4	5	
parallel space $SS_{par}(d)$	50	78	102	70	50	50	
conditioning space	0	2	6	22	38	50	
no. of subproblems	1	2	8	8	6	0	
max. parallel subproblem	50	38	14	6	2		
cond. space $+ \max$. subprob	50	40	20	28	40	50	

- Assume parallelism with sufficient CPUs.
 - Consider conditioning space + max. subproblem.

Example revisited:	d						
	0	1	2	3	4	5	
parallel space $SS_{par}(d)$	50	78	102	70	50	50	
conditioning space	0	2	6	22	38	50	
no. of subproblems	1	2	8	8	6	0	
max. parallel subproblem	50	38	14	6	2	_	
cond. space $+ \max$. subprob	50	40	20	28	40	50	

- Assume parallelism with sufficient CPUs.
 - Consider conditioning space + max. subproblem.

Example revisited:	d						
	0	1	2	3	4	5	
parallel space $SS_{par}(d)$	50	78	102	70	50	50	
conditioning space	0	2	6	22	38	50	
no. of subproblems	1	2	8	8	6	0	
max. parallel subproblem	50	38	14	6	2	—	
cond. space $+ \max$. subprob	50	40	20	28	40	50	

- But: doesn't capture explored search space.
 - Can pruning compensate for redundancies?

Empirical Evaluation

- Parallel experiments over 75 benchmarks.
 - Instances from four classes, with varying *i*-bound.
 - T_{seq} from under 1 hour to over 2 weeks.
 - Run with 20, 100, and 500 parallel CPUs.

Empirical Evaluation

- Parallel experiments over 75 benchmarks.
 - Instances from four classes, with varying *i*-bound.
 - T_{seq} from under 1 hour to over 2 weeks.
 - Run with 20, 100, and 500 parallel CPUs.
- Experimental Methodology:
 - Apply different fixed-depth cutoff depths *d*.
 - Use subproblem count *p* as var-depth input.

Empirical Evaluation

- Parallel experiments over 75 benchmarks.
 - Instances from four classes, with varying *i*-bound.
 - T_{seq} from under 1 hour to over 2 weeks.
 - Run with 20, 100, and 500 parallel CPUs.
- Experimental Methodology:
 - Apply different fixed-depth cutoff depths *d*.
 - Use subproblem count *p* as var-depth input.
- ~91 thousand CPU hours over 10 years!
 - Over 1400 parallel runs.
 - Can only summarize some aspects here.

Example Results

• Record overall parallel runtime / speedup.

- Lots of data!

					Cutoff depth d																	
instance	i	T_{seq}	#cpu	2 2	2 4		6		8		10		1	2								
			fix	var	fix	var	fix	var	fix	var	fix	var	fix	var								
				(p=	=4)	(p=	(p=20)		(p=80)		(p=476)		(p=1830)		6964)							
$\frac{\text{IF3-15-59}}{\substack{n=3730\\k=3\\w=31\\h=84}}$	19	43307	20	15858	15694	5909	5470	3649	2845	2744	2501	3482	3505	7222	7238							
			100	15858	15694	5909	5470	3434	2247	1494	723	928	741	1540	1536							
			500	15858	15694	5909	5470	3434	2247	1414	573	692	260	415	399							
144					=4)	(p=16)		(p=112)		(p=560)		(p=2240)		(p=8960)								
$\underline{\text{ped44}}_{311}$	6	C	G	G	6	05090	° 05090	05020	e 05020	20	26776	26836	9716	9481	6741	6811	7959	7947	10103	9763	12418	12472
n = 811 k = 4 w = 25		93830	100	26776	26836	9716	9481	2344	3586	1799	1700	2126	2276	2545	2543							
${}^{w=25}_{h=65}$			500	26776	26836	9716	9481	1659	3586	583	886	536	905	569	824							
n o d7				(p=	=4)	(p=	-32)	(p=	160)	(p=	640)	(p=1)	280)	(p=3	840)							
$\frac{\text{ped }i}{\substack{n=1068\\k=4\\\dots=22}}$	G	110000	20	35387	58872	12338	58121	9031	8515	9654	7319	8705	7582	8236	7693							
	U	110909	100	35387	58872	11956	58121	5122	7690	4860	2306	3929	1814	2644	1649							
h = 90					500	35387	58872	11956	58121	4984	7690	4359	2086	3294	1301	1764	943					

Example Results

• Record overall parallel runtime / speedup.

- Lots of data!

					Cutoff depth d											
instance	i	T_{seq}	#cpu	<u> </u>	2 4		4 6		Ĵ	8		10		12		
				fix	var	fix	var	fix	var	fix	var	fix	var	fix	var	
				(p=	=4)	(p=20)		(p=80)		(p=	(p=476)		(p=1830)		(p=6964)	
$\left \frac{1F3-15-59}{n-3730}\right $	10	19907	20	2.73	2.76	7.33	7.92	11.87	15.22	15.78	17.32	12.44	12.36	6.00	5.98	
$n=3750 \\ k=3 \\ w=31 \\ h=84$	19	43307	100	2.73	2.76	7.33	7.92	12.61	19.27	28.99	59.90	46.67	58.44	28.12	28.19	
			500	2.73	2.76	7.33	7.92	12.61	19.27	30.63	75.58	62.58	166.57	104.35	108.54	
144	0			(p=	=4)	(p=16)		(p=112)		(p=560)		(p=2240)		p=8960)		
$\frac{\text{ped44}}{10000000000000000000000000000000000$		95830	20 $ $	3.58	3.57	9.86	10.11	14.22	14.07	12.04	12.06	9.49	9.82	7.72	7.68	
n = 811 k = 4 w = 25	0		100	3.58	3.57	9.86	10.11	40.88	26.72	53.27	56.37	45.08	42.10	37.65	37.68	
$h=25 \\ h=65$			500	3.58	3.57	9.86	10.11	57.76	26.72	164.37	108.16	178.79	105.89	168.42	116.30	
17				(p=	=4)	(p=	=32)	(p =	160)	(p=	640)	(p=1)	280)	(p=3)	3840)	
$ \underline{\text{ped}'} $	G	110909	20 $ $	3.35	2.01	9.59	2.04	13.11	13.90	12.26	16.17	13.60	15.61	14.37	15.39	
n=1068 k=4 w=22	0	110909	100	3.35	2.01	9.90	2.04	23.11	15.39	24.36	51.34	30.13	65.26	44.77	71.79	
h=90			500	3.35	2.01	9.90	2.04	23.75	15.39	27.16	56.75	35.94	90.99	67.11	125.54	

Example: LargeFam3-15-59, *i*=19

• Sequential runtime $T_{seq} = 43,307$ sec.

Example: LargeFam3-15-59, *i*=19

(Fixed-depth)

IF3-15-59, i=19, 100 CPUs, fixed d=8

• Sequential runtime $T_{seq} = 43,307$ sec.

)15

• Sequential runtime $T_{seq} = 118,383$ sec.

• Sequential runtime $T_{seq} = 118,383$ sec.

Subproblem index i

• Sequential runtime $T_{seq} = 118,383$ sec.

Stdv: 2635.9

Subproblem index i

60

80

40

Med: 569 Avg: 1357.9

20

)15

• Sequential runtime $T_{seq} = 118,383$ sec.

• Sequential runtime $T_{seq} = 118,383$ sec.

• Sequential runtime $T_{seq} = 118,383$ sec.

(Fixed-depth)

Example: LargeFam3-16-56, *i*=15

• Sequential runtime $T_{seq} = 1,891,710$ sec.

Example: LargeFam3-16-56, *i*=15

(Fixed-depth)

• Sequential runtime $T_{seq} = 1,891,710$ sec.

Example: LargeFam3-16-56, *i*=15

(Fixed-depth)

• Sequential runtime $T_{seq} = 1,891,710$ sec.

Example: Pdb1huw, *i*=3

• Sequential runtime $T_{seq} = 545,249$ sec.

Example: Pdb1huw, *i*=3

• Sequential runtime $T_{seq} = 545,249$ sec.

Subproblem index i

(Fixed-depth)

Example: Pdb1huw, *i*=3

• Sequential runtime $T_{seq} = 545,249$ sec.

pdb1huw, i=3, 100 CPUs, fixed d=4

Example: 75-25-1, *i*=14

• Sequential runtime $T_{seq} = 15,402$ sec.

Example: 75-25-1, *i*=14

(Fixed-depth)

• Sequential runtime $T_{seq} = 15,402$ sec.

Example: 75-25-1, *i*=14

(Fixed-depth)

• Sequential runtime $T_{seq} = 15,402$ sec.

- Compute SS_{par} bound (ahead of time).
 - Plot against N_{par} for different *i*-bounds.

- Compute SS_{par} bound (ahead of time).
 - Plot against N_{par} for different *i*-bounds.

- Compute SS_{par} bound (ahead of time).
 - Plot against N_{par} for different *i*-bounds.

IJCAI 2015

- Compute SS_{par} bound (ahead of time).
 - Plot against N_{par} for different *i*-bounds.

- Compute SS_{par} bound (ahead of time).
 - Plot against N_{par} for different *i*-bounds.

Underlying vs. Explored Search Space Compute SS_{par} bound (ahead of time).

- - Plot against N_{par} for different *i*-bounds.

- Assess parallel redundancies in practice.
 - Node expansion overhead $O_{par} = N_{par} / N_{seq}$.

- Assess parallel redundancies in practice.
 - Node expansion overhead $O_{par} = N_{par} / N_{seq}$.

• Assess parallel redundancies in practice.

- Node expansion overhead $O_{par} = N_{par} / N_{seq}$.

IJCAI 2015

- Assess parallel redundancies in practice.
 - Node expansion overhead $O_{par} = N_{par} / N_{seq}$.

- Assess parallel redundancies in practice.
 - Node expansion overhead $O_{par} = N_{par} / N_{seq}$.

- Assess parallel redundancies in practice.
 - Node expansion overhead $O_{par} = N_{par} / N_{seq}$.

- Plot speedup against CPU count.
 - Trade off load balancing vs. overhead:
 - #subproblems $\approx 10 \times \#$ CPUs

- Plot speedup against CPU count.
 - Trade off load balancing vs. overhead:
 - #subproblems $\approx 10 \times #CPUs$

- Plot speedup against CPU count.
 - Trade off load balancing vs. overhead:
 - #subproblems $\approx 10 \times #CPUs$

IJCAI 2015

- Plot speedup against CPU count.
 - Trade off load balancing vs. overhead:
 - #subproblems $\approx 10 \times #$ CPUs

- Plot speedup against CPU count.
 - Trade off load balancing vs. overhead:
 - #subproblems $\approx 10 \times #CPUs$

- Plot speedup against CPU count.
 - Trade off load balancing vs. overhead:
 - #subproblems $\approx 10 \times #$ CPUs

Fixed-depth vs. Variable-depth

- Compare speedup of the two parallel schemes.
 - Count cases that are 10% and 50% better.

	margin	fix	var	fix	var	fix	var	fix	var	fix	var	fix	var	
		d = 2		d = 4		d = 6		d = 8		d = 10		d = 12		
	10%	20	16	40	30	38	41	24	49	28	40	12	28	
Pedigree	50%	20	12	27	15	30	15	16	22	20	9	4	13	
		(116	total)	(116	total)	(116	total)	(116	total)	(108	total)	(88 1	total)	
			d = 2		d = 4		d = 6		d = 8		d = 10		d = 12	
	10%	32	12	21	30	11	51	7	52	5	47	8	32	
LargeFam	50%	12	0	15	10	8	28	3	36	1	30	5	22	
		(84 total)		(84 total)		(84 total)		(76 total)		(76 total)		(76 total)		
		d = 1		d = 2		d = 3		d = 4		d = 5		d = 6		
	10%	0	0	5	39	0	33	0	20	0	4	0	4	
Pdb	50%	0	0	4	30	0	28	0	16	0	4	0	4	
		(44 1	total)	(44 1	total)	(36 t	total)	(20 t	total)	(4 t	otal)	(4 t	otal)	
Γ		d = 2		d = 4		d = 6		d = 8		d = 10		d = 12		
Grid	10%	20	13	12	9	17	8	27	10	20	9	12	19	
	50%	12	4	10	0	9	3	11	3	5	6	5	8	
		(60 1	total)	(60 1	total)	(60 t	total)	(60 t	total)	(60)	total)	(60 1	total)	

Outline

- Introduction
- Inference
- Bounds and heuristics
- AND/OR Search
- Exploiting parallelism
- Software
 - UAI Probabilistic Inference Competition

Software

- aolib
 - http://graphmod.ics.uci.edu/group/Software (standalone AOBB, AOBF solvers)
- daoopt
 - https://github.com/lotten/daoopt

(distributed and standalone AOBB solver)

UAI Probabilistic Inference Competitions

(merlin)

IJCAI 2015

Conclusion

- Only a few principles
 - Inference and search should be combined
 - Time-space tradeoff
 - AND/OR search should be used
 - Caching in search should be used
 - Parallel search should be used if a distributed environment is available