
Advances in Combinatorial
Optimization for Graphical Models

Rina Dechter
University of California, Irvine

Alexander Ihler
University of California, Irvine

Radu Marinescu
IBM Research - Ireland

Lars Otten
University of California, Irvine
(now Google Inc.)

IJCAI 2015

Outline

● Introduction
– Graphical models

– Optimization tasks for graphical models

● Inference
– Variable Elimination, Bucket Elimination

● Bounds and heuristics
– Basics of search

– Bounded variable elimination and iterative cost shifting

● AND/OR Search
– AND/OR search spaces

– Depth-First Branch and Bound, Best-First search

● Exploiting parallelism
– Distributed and parallel search

● Software

IJCAI 2015

Combinatorial Optimization

Earth observing satellites Investments

Find an optimal schedule for the satellite
that maximizes the number of photographs
taken, subject to on-board recording capacity

How much to invest in each asset to earn
8 cents per Invested dollar and the
investment risk is minimized

IJCAI 2015

Combinatorial Optimization

Communications Bioinformatics

Assign frequencies to a set of radio links
such that interferencies are minimized

Find a joint haplotype configuration for
all members of the pedigree which
maximizes the probability of data

IJCAI 2015

Constrained Optimization

Power plant scheduling

Unit # Min Up
Time

Min Down
Time

1 3 2

2 2 1

3 4 1

Variables: Domains:
Constraints: min-uptime, min-downtime
Power demand:

Objective: minimize

IJCAI 2015

Constraint Optimization Problems

G

A

B C

D F

A B D Cost
1 2 3 3
1 3 2 2
2 1 3
2 3 1 0
3 1 2 5
3 2 1 0

f(A,B,D) has scope {A,B,D}

Global Cost Function

Primal graph:
 Variables - nodes

 Functions - arcs / cliques

-- variables

-- domains

-- cost functions

A finite COP is a triple where:

IJCAI 2015

Constraint Networks

C

A

B

D
E

F

G

A

B
D

C
G

F

E

Constraint graph

Map coloring

A B

red green

red blue

green red

green blue

blue red

blue green

Variables: countries (A, B, C, etc.)

Values: colors (red, green, blue)

Constraints: A ≠ B, B ≠ D, A ≠ D, etc.

IJCAI 2015

Probabilistic Networks

Smoking

Cancer Bronchitis

Dyspnoea

X-Ray

P(S)

P(B|S)P(C|S)

P(D|C,B)

P(X|C,S)

C B D=0 D=1

0 0 0.1 0.9

0 1 0.7 0.3

1 0 0.8 0.2

1 1 0.9 0.1

P(D|C,B)

MPE: Find a maximum probability assignment, given evidence

 = Find

IJCAI 2015

Monitoring Intensive-Care Patients

PCWP CO

HRBP

HREKG HRSAT

ERRCAUTERHRHISTORY

CATECHOL

SAO2 EXPCO2

ARTCO2

VENTALV

VENTLUNG VENITUBE

DISCONNECT

MINVOLSET

VENTMACHKINKEDTUBEINTUBATIONPULMEMBOLUS

PAP SHUNT

ANAPHYLAXIS

MINOVL

PVSAT

FIO2
PRESS

INSUFFANESTHTPR

LVFAILURE

ERRBLOWOUTPUTSTROEVOLUMELVEDVOLUME

HYPOVOLEMIA

CVP

BP

The “alarm” network – 37 variables, 509 parameters (instead of 237)

IJCAI 2015

Genetic Linkage Analysis

- 6 individuals
- Haplotype: {2, 3}
- Genotype: {6}
- Unknown

 2 1

 3 4

 5 6

? | A
? | B

? | ?
? | ?

? | ?
? | ?

A | a
B | b

A | A
B | b

A | a
B | b

IJCAI 2015

Pedigree: 6 people, 3 markers
L11m L11f

X11

L12m L12f

X12

L13m L13f

X13

L14m L14f

X14

L15m L15f

X15

L16m L16f

X16

S13m

S15m

S16mS15m

S15m

S15m

L21m L21f

X21

L22m L22f

X22

L23m L23f

X23

L24m L24f

X24

L25m L25f

X25

L26m L26f

X26

S23m

S25m

S26mS25m

S25m

S25m

L31m L31f

X31

L32m L32f

X32

L33m L33f

X33

L34m L34f

X34

L35m L35f

X35

L36m L36f

X36

S33m

S35m

S36mS35m

S35m

S35m

IJCAI 2015

Influence Diagrams

Test

Drill
Oil sale
policy

Test
result

Seismic
structure

Oil
underground

Oil
produced

Test
cost

Drill
cost

Sales
cost

Oil
sales

Market
information

Task: find optimal policy

Chance variables:

Decision variables:

CPDs for chance variables:

Reward components:

Utility function:

IJCAI 2015

Graphical Models

● A graphical model (X, D, F):

– variables

– domains

– functions
● (constraints, CPTs, CNFs, ...)

● Operators

– Combination

– Elimination (projection)

● Tasks

– Belief updating:

– MPE/MAP:

– Marginal MAP:

– CSP:

– WCSP:

– MEU:

A

D

B
C

E

F

A C F P(F|A,C)
0 0 0 0.14
0 0 1 0.96
0 1 0 0.40
0 1 1 0.60
1 0 0 0.35
1 0 1 0.65
1 1 0 0.72
1 1 1 0.68)(: CAFf i

A C F

red green blue
blue red red
blue blue green

green red blue

RelationCPT

Primal graph
(interaction graph)

● All these tasks are NP-hard
● Exploit problem structure
● Identify special cases
● Approximate

IJCAI 2015

Example Domains for Graphical Models

● Web Pages and Link Analysis
● Communication Networks (Cell phone fraud detection
● Natual Language Processing (e.g., information extraction and semantic

parsing)
● Battlespace Awarness
● Epidemiological Studies
● Citation Networks
● Intelligence Analysis (terrorist networks)
● Financial Transactions (money laundering)
● Computational Biology
● Object Recognition and Scene Analysis
● ...

IJCAI 2015

Combinatorial Optimization Tasks

● Most Probable Explanation (MPE),
or Maximum A Posteriori (MAP)

● M Best MPE/MAP
● Marginal MAP (MMAP)
● Weighted CSPs (WCSP), Max-CSPs, Max-SAT
● Integer Linear Programs
● Maximum Expected Utility (MEU)

IJCAI 2015

Outline

● Introduction

– Graphical models

– Optimization tasks for graphical models

– Solving optimization problems by inference and search

● Inference

● Bounds and heuristics

● AND/OR Search

● Exploiting parallelism

● Software

IJCAI 2015

Solution Techniques

Search: Conditioning

Complete

Incomplete

Simulated Annealing

Gradient Descent

Complete

Incomplete

Adaptive Consistency
Tree Clustering

Variable Elimination
Resolution

Local Consistency

Unit Resolution

Mini-bucket(i)

Stochastic Local Search
DFS search

Branch-and-Bound

A*

Inference: Elimination

Time: exp(treewidth)
Space:exp(treewidth)

Time: exp(n)
Space: linear

AND/OR search
Time: exp(treewidth*log n)

Space: linear

Hybrids

Space: exp(treewidth)
Time: exp(treewidth)

Time: exp(pathwidth)
Space: exp(pathwidth)

IJCAI 2015

Combination of Cost Functions

+

= 0 + 6

A B C f(A,B,C)

b b b 12

b b g 6

b g b 0

b g g 6

g b b 6

g b g 0

g g b 6

g g g 12

A B f(A,B)

b b 6

b g 0

g b 0

g g 6

B C f(B,C)

b b 6

b g 0

g b 0

g g 6

IJCAI 2015

Elimination in a Cost Function

A B f(A,B)

b b 4

b g 6

b r 1

g b 2

g g 6

g r 3

r b 1

r g 1

r r 6

Elim(f,B) A g(A)

b

g

r

1

1
2

Elim(g,A)
h

1

min

IJCAI 2015

Conditioning in a Cost Function

Assign A=b B g(B)

b

g

r

4

1
6

Assign B=r
h

4

A B f(A,B)

b b 4

b g 6

b r 1

g b 2

g g 6

g r 3

r b 1

r g 1

r r 6

IJCAI 2015

Conditioning vs. Elimination

A

G

B

C

E

D

F

Conditioning (search) Elimination (inference)

A=1 A=k…

G

B

C

E

D

F

G

B

C

E

D

F

A

G

B

C

E

D

F

G

B

C

E

D

F

k “sparser” problems 1 “denser” problem

IJCAI 2015

Outline

● Introduction
● Inference

– Variable Elimination, Bucket Elimination

● Bounds and heuristics
● AND/OR Search
● Exploiting parallelism
● Software

IJCAI 2015

Computing the Optimal Cost Solution

Constraint graph

A

B C

ED

OPT =

Combination

Variable Elimination

IJCAI 2015

Bucket Elimination

Elimination/Combination operators

bucket B:

bucket C:

bucket D:

bucket E:

bucket A:

B

C

D

E

A

Algorithm elim-opt [Dechter, 1996]
Non-serial Dynamic Programming [Bertele & Briochi, 1973]

OPT =

OPT

IJCAI 2015

Generating the Optimal Assignment

C:

E:

B:

D:

A:

Return:

IJCAI 2015

Complexity of Bucket Elimination

Elimination / Combination operators

bucket B:

bucket C:

bucket D:

bucket E:

bucket A:

B

C

D

E

A

Algorithm elim-opt [Dechter, 1996]
Non-serial Dynamic Programming [Bertele & Briochi, 1973]

OPT =

 exp(w*=4)
“induced width”
(max clique size)

OPT

IJCAI 2015

Complexity of Bucket Elimination

The effect of the ordering:

constraint graph

A

D E

CB

r = number of functions

Bucket Elimination is time and space

Finding the smallest induced width is hard!

C

D

A

E

B E

D

C

B

A

: the induced width of the primal graph along ordering d

IJCAI 2015

Outline

● Introduction
● Inference
● Bounds and heuristics

– Basics of search: DFS versus BFS

– Mini-Bucket Elimination

– Weighted Mini-Buckets and Iterative Cost-Shifting

– Generating Heuristics using Mini-Bucket Elimination

● AND/OR Search
● Exploiting parallelism
● Software

IJCAI 2015

Outline

● Introduction
● Inference
● Bounds and heuristics

– Basics of search: DFS versus BFS

– Mini-Bucket Elimination

– Weighted Mini-Buckets and Iterative Cost-Shifting

– Generating Heuristics using Mini-Bucket Elimination

● AND/OR Search
● Exploiting parallelism
● Software

IJCAI 2015

OR Search Spaces
A

E

C

B

F

D

A B f1

0 0 2
0 1 0
1 0 1
1 1 4

A C f2

0 0 3
0 1 0
1 0 0
1 1 1

A E f3

0 0 0
0 1 3
1 0 2
1 1 0

A F f4

0 0 2
0 1 0
1 0 0
1 1 2

B C f5

0 0 0
0 1 1
1 0 2
1 1 4

B D f6

0 0 4
0 1 2
1 0 1
1 1 0

B E f7

0 0 3
0 1 2
1 0 1
1 1 0

C D f8

0 0 1
0 1 4
1 0 0
1 1 0

E F f9

0 0 1
0 1 0
1 0 0
1 1 2

0 1 0 1 0 1 0 1

0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

0 1 0 1

0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

0 1 0 1

C

D

F

E

B

A 0 1

Objective function:

IJCAI 2015

OR Search Spaces
A

E

C

B

F

D

A B f1

0 0 2
0 1 0
1 0 1
1 1 4

A C f2

0 0 3
0 1 0
1 0 0
1 1 1

A E f3

0 0 0
0 1 3
1 0 2
1 1 0

A F f4

0 0 2
0 1 0
1 0 0
1 1 2

B C f5

0 0 0
0 1 1
1 0 2
1 1 4

B D f6

0 0 4
0 1 2
1 0 1
1 1 0

B E f7

0 0 3
0 1 2
1 0 1
1 1 0

C D f8

0 0 1
0 1 4
1 0 0
1 1 0

E F f9

0 0 1
0 1 0
1 0 0
1 1 2

Arc-cost is calculated based on cost functions with empty scope (conditioning)

0 1 0 1 0 1 0 1

0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

0 1 0 1

0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

0 1 0 1

C

D

F

E

B

A 0 1

3 02 23 02 23 02 23 02 2 3 02 23 02 23 02 23 02 2

0 0

3 5 3 5 3 5 3 5 1 3 1 3 1 3 1 3

5 6 4 2 2 4 1 0

3 1

2

5 4

0

1 20 41 20 41 20 41 20 4 1 20 41 20 41 20 41 20 4

5 2 5 2 5 2 5 2 3 0 3 0 3 0 3 0

5 6 4 2 2 4 1 0

0 2 2 5

0 4

Objective function:

IJCAI 2015

The Value Function
A

E

C

B

F

D

A B f1

0 0 2
0 1 0
1 0 1
1 1 4

A C f2

0 0 3
0 1 0
1 0 0
1 1 1

A E f3

0 0 0
0 1 3
1 0 2
1 1 0

A F f4

0 0 2
0 1 0
1 0 0
1 1 2

B C f5

0 0 0
0 1 1
1 0 2
1 1 4

B D f6

0 0 4
0 1 2
1 0 1
1 1 0

B E f7

0 0 3
0 1 2
1 0 1
1 1 0

C D f8

0 0 1
0 1 4
1 0 0
1 1 0

E F f9

0 0 1
0 1 0
1 0 0
1 1 2

Value of node = minimal cost solution below it

0 1 0 1 0 1 0 1

0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

0 1 0 1

0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

0 1 0 1

C

D

F

E

B

A 0 1

3 0
0

2 2

6

2

3

3 02 23 02 23 02 2 3 02 23 02 23 02 23 02 2
0 0 02 2 2 0 2 0 0 02 2 2

3 3 3 1 1 1 1

8 5 3 1

5

5

1 0 1 1 10 0 0 1 0 1 1 10 0 0

2 2 2 2 0 0 0 0

7 4 2 0

7 4

7

5
0 0

3 5 3 5 3 5 3 5 1 3 1 3 1 3 1 3

5 6 4 2 2 4 1 0

3 1

2

5 4

0

1 20 41 20 41 20 41 20 4 1 20 41 20 41 20 41 20 4

5 2 5 2 5 2 5 2 3 0 3 0 3 0 3 0

5 6 4 2 2 4 1 0

0 2 2 5

0 4

Objective function:

IJCAI 2015

The Optimal Solution
A

E

C

B

F

D

A B f1

0 0 2
0 1 0
1 0 1
1 1 4

A C f2

0 0 3
0 1 0
1 0 0
1 1 1

A E f3

0 0 0
0 1 3
1 0 2
1 1 0

A F f4

0 0 2
0 1 0
1 0 0
1 1 2

B C f5

0 0 0
0 1 1
1 0 2
1 1 4

B D f6

0 0 4
0 1 2
1 0 1
1 1 0

B E f7

0 0 3
0 1 2
1 0 1
1 1 0

C D f8

0 0 1
0 1 4
1 0 0
1 1 0

E F f9

0 0 1
0 1 0
1 0 0
1 1 2

Value of node = minimal cost solution below it

0 1 0 1 0 1 0 1

0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

0 1 0 1

0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

0 1 0 1

C

D

F

E

B

A 0 1

3 0
0

2 2

6

2

3

3 02 23 02 23 02 2 3 02 23 02 23 02 23 02 2
0 0 02 2 2 0 2 0 0 02 2 2

3 3 3 1 1 1 1

8 5 3 1

5

5

1 0 1 1 10 0 0 1 0 1 1 10 0 0

2 2 2 2 0 0 0 0

7 4 2 0

7 4

7

5
0 0

3 5 3 5 3 5 3 5 1 3 1 3 1 3 1 3

5 6 4 2 2 4 1 0

3 1

2

5 4

0

1 20 41 20 41 20 41 20 4 1 20 41 20 41 20 41 20 4

5 2 5 2 5 2 5 2 3 0 3 0 3 0 3 0

5 6 4 2 2 4 1 0

0 2 2 5

0 4

Objective function:

IJCAI 2015

Basic Heuristic Search Schemes

Heuristic function computes a lower bound on the best extension of
partial configuration and can be used to guide heuristic search.
We focus on:

1. Branch-and-Bound
Use heuristic function to
prune the depth-first search tree
Linear space

2. Best-First Search
Always expand the node with
the lowest heuristic value
Needs lots of memory

IJCAI 2015

Classic Depth-First Branch and Bound

n

g(n) : cost of the path from root to n

 : under-estimates optimal cost below n

Prune if

(UB) Upper Bound = best solution so far

Each node is a COP subproblem
(defined by current conditioning)

(lower bound)

IJCAI 2015

Best-First vs. Depth-First Branch and Bound

● Best-First (A*):
– Expands least number

of nodes given h

– Requires storing full
search tree in memory

● Depth-First BnB:
– Can use linear space

– If finds an optimal
solution early, will
expand the same
search space as Best-
First (if search space
is a tree)

– BnB can improve the
heuristic function
dynamically

IJCAI 2015

How to Generate Heuristics

● The principle of relaxed models
– Mini-Bucket Elimination

– Bounded directional consistency ideas

– Linear relaxations for integer programs

IJCAI 2015

Outline

● Introduction
● Inference
● Bounds and heuristics

– Basics of search: DFS versus BFS

– Mini-Bucket Elimination

– Weighted Mini-Buckets and Iterative Cost-Shifting

– Generating Heuristics using Mini-Bucket Elimination

● AND/OR Search
● Exploiting parallelism
● Software

IJCAI 2015

Mini-Bucket Approximation
Split a bucket into mini-buckets => bound complexity

bucket (X) =

Exponential complexity decrease:

IJCAI 2015

Mini-Bucket Elimination

[Dechter and Rish, 2003]

A

B C

D E

mini-buckets

bucket A:

bucket E:

bucket D:

bucket C:

bucket B:

L = lower bound

IJCAI 2015

Mini-Bucket Elimination Semantics

A

B C

D E

B’

A

B C

D E

mini-buckets

bucket A:

bucket E:

bucket D:

bucket C:

bucket B:

L = lower bound

IJCAI 2015

Semantics of Mini-Buckets: Splitting a Node

Variables in different buckets are renamed and duplicated
[Kask et al., 2001], [Geffner et al., 2007], [Choi et al., 2007], [Johnson et al. 2007]

Before Splitting:
Network N

U

After Splitting:
Network N'

U
Û

IJCAI 2015

MBE-MPE(i): Algorithm Approx-MPE

● Input: i – max number of variables allowed in a mini-bucket

● Output: [lower bound (P of a suboptimal solution), upper bound]

 Example: approx-mpe(3) versus elim-mpe

[Dechter and Rish, 1997]

 A:

 E:

 D:

 C:

 B:

L = lower bound

 A:

 E:

 D:

 C:

 B:

OPT

Max variables
in
 a mini-bucket

3

3

3

2

1

IJCAI 2015

Mini-Bucket Decoding

[Dechter and Rish, 2003]

Greedy configuration = upper bound

mini-buckets

bucket A:

bucket E:

bucket D:

bucket C:

bucket B:

L = lower bound

IJCAI 2015

Properties of MBE(i)

● Complexity: O(r exp(i)) time and O(exp(i)) space

● Yields a lower-bound and an upper-bound

● Accuracy: determined by upper/lower (U/L) bound

● Possible use of mini-bucket approximations:

– As anytime algorithms

– As heuristics in search

● Other tasks (similar mini-bucket approximations):

– Belief updating, Marginal MAP, MEU, WCSP, MaxCSP
[Dechter and Rish, 1997], [Liu and Ihler, 2011], [Liu and Ihler, 2013]

IJCAI 2015

Outline

● Introduction
● Inference
● Bounds and heuristics

– Basics of search: DFS versus BFS

– Mini-Bucket Elimination

– Weighted Mini-Buckets and Iterative Cost-Shifting

– Generating Heuristics using Mini-Bucket Elimination

● AND/OR Search
● Exploiting parallelism
● Software

IJCAI 2015

Cost-Shifting

+

= 0 + 6

A B C f(A,B,C)

b b b 12

b b g 6

b g b 0

b g g 6

g b b 6

g b g 0

g g b 6

g g g 12

A B f(A,B)

b b 6 + 3

b g 0 - 1

g b 0 + 3

g g 6 - 1

B C f(B,C)

b b 6 - 3

b g 0 - 3

g b 0 + 1

g g 6 + 1

(Reparameterization)

B

b 3

g -1

B

B B

Modify the individual functions

- but -

keep the sum of functions unchanged

IJCAI 2015

Dual Decomposition

● Bound solution using decomposed optimization
● Solve independently: optimistic bound

IJCAI 2015

Dual Decomposition

● Bound solution using decomposed optimization
● Solve independently: optimistic bound

● Tighten the bound by reparameterization
– Enforce lost equality constraints via Lagrange multipliers

Reparameterization:

IJCAI 2015

Dual Decomposition

Many names for the same class of bounds:
– Dual decomposition [Komodakis et al. 2007]

– TRW, MPLP [Wainwright et al. 2005, Globerson & Jaakkola 2007]

– Soft arc consistency [Cooper & Schiex 2004]

– Max-sum diffusion [Warner 2007]

Reparameterization:

IJCAI 2015

Dual Decomposition

Many ways to optimize the bound:
– Sub-gradient descent [Komodakis et al. 2007; Jojic et al. 2010]

– Coordinate descent [Warner 2007; Globerson & Jaakkola 2007; Sontag et al. 2009; Ihler et al. 2012]

– Proximal optimization [Ravikumar et al. 2010]

– ADMM [Meshi & Globerson 2011; Martins et al. 2011; Forouzan & Ihler 2013]

Reparameterization:

IJCAI 2015

Mini-Bucket as Dual Decomposition
mini-buckets

bucket A:

bucket E:

bucket D:

bucket C:

bucket B:

L = lower bound

IJCAI 2015

Mini-Bucket as Dual Decomposition
mini-buckets

bucket A:

bucket E:

bucket D:

bucket C:

bucket B:

L = lower bound

IJCAI 2015

Mini-Bucket as Dual Decomposition
mini-buckets

bucket A:

bucket E:

bucket D:

bucket C:

bucket B:

L = lower bound

IJCAI 2015

Mini-Bucket as Dual Decomposition
mini-buckets

bucket A:

bucket E:

bucket D:

bucket C:

bucket B:

L = lower bound

IJCAI 2015

Mini-Bucket as Dual Decomposition
mini-buckets

bucket A:

bucket E:

bucket D:

bucket C:

bucket B:

L = lower bound

IJCAI 2015

Mini-Bucket as Dual Decomposition
mini-buckets

bucket A:

bucket E:

bucket D:

bucket C:

bucket B:

L = lower bound

IJCAI 2015

Mini-Bucket as Dual Decomposition

bucket A:

bucket E:

bucket D:

bucket C:

bucket B:

L = lower bound

Join graph:

● Downward pass as cost-shifting

● Can also do cost-shifting within
mini-buckets

● “Join graph” message passing

● “Moment matching” version:
one message update within each
bucket during downward sweep.

IJCAI 2015

Anytime Approximation

UL

L

U

mpe(i)-approxL

mpe(i)-approxU

iii

ii

step

smallest theand largest the

solutionreturn ,11

far so foundsolution best thekeep

by computed boundlower

by computed boundupper

available are resources space and time
0

 return

end

 if

 While

 :Initialize

)mpe(-anytime

[Dechter and Rish, 2003]

IJCAI 2015

Anytime Approximation

● Can tighten the bound in various ways
– Cost-shifting (improve consistency between cliques)
– Increase i-bound (higher order consistency)

● Simple moment-matching step improves bound significantly

MBE
MBE+MM
MBE+JG

i = 1
i = 3

i = 5

i = 7
i = 9

i = 11

i = 13
i = 15

pedigree20

MBE
MBE+MM
MBE+JG

i = 1

i = 3

i = 5

i = 7
i = 9 i = 11

i = 13

pedigree37
-124

-122

-120

-118

-116

-114

-112

-110

-108

-106

-340

-330

-320

-310

-300

-280

-270

-290

IJCAI 2015

Anytime Approximation

● Can tighten the bound in various ways
– Cost-shifting (improve consistency between cliques)
– Increase i-bound (higher order consistency)

● Simple moment-matching step improves bound significantly

MBE
MBE+MM
MBE+JG

i = 1
i = 3

i = 5

i = 7
i = 9

i = 11

i = 13
i = 15

pedigree20

MBE
MBE+MM
MBE+JG

i = 1

i = 3

i = 5

i = 7
i = 9 i = 11

i = 13

pedigree37

i = 1
+ MM

i = 15
+ MM

-124

-122

-120

-118

-116

-114

-112

-110

-108

-106

-340

-330

-320

-310

-300

-280

-270

-290

IJCAI 2015

Anytime Approximation

● Can tighten the bound in various ways
– Cost-shifting (improve consistency between cliques)
– Increase i-bound (higher order consistency)

● Simple moment-matching step improves bound significantly

MBE
MBE+MM
MBE+JG

i = 1
i = 3

i = 5

i = 7
i = 9

i = 11

i = 13
i = 15

pedigree20

MBE
MBE+MM
MBE+JG

i = 1

i = 3

i = 5

i = 7
i = 9 i = 11

i = 13

pedigree37

i = 1
+ MM

i = 15
+ MM

-124

-122

-120

-118

-116

-114

-112

-110

-108

-106

-340

-330

-320

-310

-300

-280

-270

-290

IJCAI 2015

Weighted Mini-Bucket

Exact bucket elimination:

where

is the weighted or “power” sum operator

By Holder's inequality,

where and

(lower bound if)

[Liu & Ihler 2011]

(mini-buckets)

 (for summation bounds)
mini-buckets

bucket A:

bucket E:

bucket D:

bucket C:

bucket B:

U = upper bound

IJCAI 2015

Weighted Mini-Bucket

● Related to conditional entropy decomposition
[Globerson & Jaakkola 2008]

but, with an efficient, “primal” bound form

● We can optimize the bound over:
● Cost-shifting
● Weights

● Again, involves message passing on JG

● Similar, one-pass “moment matching” variant

[Liu & Ihler 2011]

bucket A:

bucket E:

bucket D:

bucket C:

bucket B:

U = upper bound

Join graph:

IJCAI 2015

WMB for Marginal MAP

(w = “temperature”)

Weighted mini-bucket is applicable more generally, since

So, when w=0+, WMB reduces to max-inference.

For marginal MAP problems, just use different w's:

IJCAI 2015

WMB for Marginal MAP

[Liu & Ihler 2011, 2013]

Marginal MAP:

...

Can optimize over cost-shifting and weights

(single-pass “MM” or with iterative message passing)

mini-buckets

bucket A:

bucket E:

bucket D:

bucket C:

bucket B:

U = upper bound

IJCAI 2015

Outline

● Introduction
● Inference
● Bounds and heuristics

– Basics of search: DFS versus BFS

– Mini-Bucket Elimination

– Weighted Mini-Buckets and Iterative Cost-Shifting

– Generating Heuristics using Mini-Bucket Elimination

● AND/OR Search
● Exploiting parallelism
● Software

IJCAI 2015

Generating Heuristics for Graphical Models

Given a cost function:

define an evaluation function over a partial assignment as the cost of its
best extension:

[Kask and Dechter, 2001]

h(n)0 1 0 1

0 1 0 1 0 1 0 1

0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

0 1

E

D

B

C

A

IJCAI 2015

h(n)

Static Mini-Bucket Heuristics

bucket A:

bucket E:

bucket D:

bucket C:

bucket B:

0 1 0 1

0 1 0 1 0 1 0 1

0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

0 1

E

D

B

C

A

cost to go:

cost so far:

Given a partial assignment,
 (weighted) mini-bucket gives an admissible heuristic:

mini-buckets

L = lower bound

(admissible:)

IJCAI 2015

Properties of the Heuristic

● MB heuristic is monotone, admissible
● Computed in linear time
● IMPORTANT

– Heuristic strength can vary by MB(i)

– Higher i-bound → more pre-processing → more
accurate heuristic → less search

● Allows controlled trade-off between pre-
processing and search

IJCAI 2015

Dynamic Mini-Bucket Heuristics

● Rather than pre-compile, compute the heuristics,
dynamically, during search

● Dynamic MB: use the Mini-Bucket algorithm to
produce a bound for any node during search

● Dynamic MBTE: compute heuristics
simultaneously for all un-instantiated variables
using Mini-Bucket-Tree Elimination (MBTE)

● MBTE is an approximation scheme defined over
cluster trees. It outputs multiple bounds for each
variable and value extension at once

[Marinescu, Kask and Dechter, 2003]

IJCAI 2015

Outline

● Introduction
● Inference
● Bounds and heuristics
● AND/OR Search
● Exploiting parallelism
● Software

IJCAI 2015

Outline

● Introduction
● Inference
● Bounds and heuristics
● AND/OR Search

– AND/OR Search Spaces

– AND/OR Branch and Bound

– Best-First AND/OR Search

– Advanced Searches and Tasks

● Exploiting parallelism
● Software

IJCAI 2015

Solution Techniques

Search: Conditioning

Complete

Incomplete

Simulated Annealing

Gradient Descent

Complete

Incomplete

Adaptive Consistency
Tree Clustering

Variable Elimination
Resolution

Local Consistency

Unit Resolution

Mini-bucket(i)

Stochastic Local Search
DFS search

Branch-and-Bound

A*

Inference: Elimination

Time: exp(treewidth)
Space:exp(treewidth)

Time: exp(n)
Space: linear

AND/OR search
Time: exp(treewidth*log n)

Space: linear

Hybrids

Space: exp(treewidth)
Time: exp(treewidth)

Time: exp(pathwidth)
Space: exp(pathwidth)

IJCAI 2015

Classic OR Search Space
A

E

C

B

F

D

A B f1

0 0 2
0 1 0
1 0 1
1 1 4

A C f2

0 0 3
0 1 0
1 0 0
1 1 1

A E f3

0 0 0
0 1 3
1 0 2
1 1 0

A F f4

0 0 2
0 1 0
1 0 0
1 1 2

B C f5

0 0 0
0 1 1
1 0 2
1 1 4

B D f6

0 0 4
0 1 2
1 0 1
1 1 0

B E f7

0 0 3
0 1 2
1 0 1
1 1 0

C D f8

0 0 1
0 1 4
1 0 0
1 1 0

E F f9

0 0 1
0 1 0
1 0 0
1 1 2

0 1 0 1 0 1 0 1

0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

0 1 0 1

0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

0 1 0 1

C

D

F

E

B

A 0 1

Objective function:

IJCAI 2015

The AND/OR Search Tree
A

E

C

B

F

D

OR

AND

OR

AND

OR

OR

AND

AND

A

0

B

0

E

F F

0 1 0 1

0 1

C

D D

0 1 0 1

0 1

1

E

F F

0 1 0 1

0 1

C

D D

0 1 0 1

0 1

1

B

0

E

F F

0 1 0 1

0 1

C

D D

0 1 0 1

0 1

1

E

F F

0 1 0 1

0 1

C

D D

0 1 0 1

0 1

A

D

B

EC

F

Pseudo tree
[Freuder and Quinn, 1985]

[Dechter and Mateescu, 2007]

IJCAI 2015

The AND/OR Search Tree
A

E

C

B

F

D

OR

AND

OR

AND

OR

OR

AND

AND

A

0

B

0

E

F F

0 1 0 1

0 1

C

D D

0 1 0 1

0 1

1

E

F F

0 1 0 1

0 1

C

D D

0 1 0 1

0 1

1

B

0

E

F F

0 1 0 1

0 1

C

D D

0 1 0 1

0 1

1

E

F F

0 1 0 1

0 1

C

D D

0 1 0 1

0 1

A

D

B

EC

F

Pseudo tree

A solution subtree is (A=0, B=1, C=0, D=0, E=1, F=1)

IJCAI 2015

Weighted AND/OR Search Tree

A

E

C

B

F

D

A

D

B

EC

F

A B f1

0 0 2
0 1 0
1 0 1
1 1 4

A C f2

0 0 3
0 1 0
1 0 0
1 1 1

A E f3

0 0 0
0 1 3
1 0 2
1 1 0

A F f4

0 0 2
0 1 0
1 0 0
1 1 2

B C f5

0 0 0
0 1 1
1 0 2
1 1 4

B D f6

0 0 4
0 1 2
1 0 1
1 1 0

B E f7

0 0 3
0 1 2
1 0 1
1 1 0

C D f8

0 0 1
0 1 4
1 0 0
1 1 0

E F f9

0 0 1
0 1 0
1 0 0
1 1 2

A

0

B

0

E

F F

0 1 0 1

OR

AND

OR

AND

OR

OR

AND

AND 0 1

C

D D

0 1 0 1

0 1

1

E

F F

0 1 0 1

0 1

C

D D

0 1 0 1

0 1

5 6 4 2 3 0 2 2

5 2 0 2

5 2 0 2

3 3

6

5

5

5

3 1 3 5

2

2 4 1 0 3 0 2 2

2 0 0 2

2 0 0 2

4 1

5

5 4 1 3

0

1

w(A,0) = 0 w(A,1) = 0

Node Value
(bottom-up evaluation)

OR – minimization
AND – summation

Objective function:

IJCAI 2015

AND/OR versus OR Spaces
OR

AND

OR

AND

OR

OR

AND

AND

A

0

B

0

E

F F

0 1 0 1

0 1

C

D D

0 1 0 1

0 1

1

E

F F

0 1 0 1

0 1

C

D D

0 1 0 1

0 1

1

B

0

E

F F

0 1 0 1

0 1

C

D D

0 1 0 1

0 1

1

E

F F

0 1 0 1

0 1

C

D D

0 1 0 1

0 1

54 nodes

0 1 0 1 0 1 0 1

0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

0 1 0 1

0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

0 1 0 1

C

D

F

E

B

A 0 1

126 nodes

A

E

C

B

F

D

A

D

B

EC

F

IJCAI 2015

AND/OR versus OR Spaces
width depth OR space AND/OR space

Time (sec) Nodes Time (sec) AND nodes OR nodes

5 10 3.15 2,097,150 0.03 10,494 5,247

4 9 3.13 2,097,150 0.01 5,102 2,551

5 10 3.12 2,097,150 0.03 8,926 4,463

4 10 3.12 2,097,150 0.02 7,806 3,903

5 13 3.11 2,097,150 0.10 36,510 18,255

Random graphs with 20 nodes, 20 edges and 2 values per node

IJCAI 2015

Complexity of AND/OR Tree Search

AND/OR tree OR tree

Space

Time

[Freuder & Quinn85], [Collin, Dechter & Katz91],
[Bayardo & Miranker95], [Darwiche01]

d = domain size
t = depth of pseudo tree

n = number of variables
w* = induced width

IJCAI 2015

Constructing Pseudo Trees

● AND/OR serch algorithms are influenced by the
quality of the pseudo tree

● Finding minimal induced width / depth pseudo
tree is NP-hard

● Heuristics
– Min-Fill (min induced width)

– Hypergraph partitioning (min depth)

IJCAI 2015

Constructing Pseudo Trees

● Min-Fill
– Depth-first traversal of the induced graph obtained

along the min-fill elimination order heuristic

– Variables ordered according to smallest “fill-set”

● Hypergraph Partitioning
– Functions are vertices in the hypergraph and

variables are hyperedges

– Recursive decomposition of the hypergraph while
minimizing the separator size at each step

– Using state-of-the-art software package hMeTiS

[Kjaerulff, 1990]

[Karypis and Kumar, 2000]

IJCAI 2015

Quality of the Pseudo Trees

Network hypergraph min-fill

 w* depth w* depth

barley 7 13 7 23

diabetes 7 16 4 77

link 21 40 15 53

mildew 5 9 4 13

munin1 12 17 12 29

munin2 9 16 9 32

munin3 9 15 9 30

munin4 9 18 9 30

water 11 16 10 15

pigs 11 20 11 26

Network hypergraph min-fill

 w* depth w* depth

spot5 47 152 39 204

spot28 108 138 79 199

spot29 16 23 14 42

spot42 36 48 33 87

spot54 12 16 11 33

spot404 19 26 19 42

spot408 47 52 35 97

spot503 11 20 9 39

spot505 29 42 23 74

spot507 70 122 59 160

Bayesian Networks Repository SPOT5 Benchmark

IJCAI 2015

From Search Trees to Search Graphs

● Any two nodes that root identical subtrees or
subgraphs can be merged

IJCAI 2015

From Search Trees to Search Graphs

● Any two nodes that root identical subtrees or
subgraphs can be merged

IJCAI 2015

Merging Based on Contexts

● One way of recognizing nodes that can be
merged (based on the graph structure)
– context(X) = ancestors of X in the pseudo tree that

are connected to X or to descendants of X

[]

[A]

[AB]

[AE][BC]

[AB]

A

D

B

EC

F

pseudo tree

A

E

C

B

F

D

A

E

C

B

F

D

IJCAI 2015

AND/OR Search Graph

A

E

C

B

F

D

A

D

B

EC

F

A B fab

0 0 2
0 1 0
1 0 1
1 1 4

A C fac

0 0 3
0 1 0
1 0 0
1 1 1

A E fae

0 0 0
0 1 3
1 0 2
1 1 0

A F faf

0 0 2
0 1 0
1 0 0
1 1 2

B C fbc

0 0 0
0 1 1
1 0 2
1 1 4

B D fbd

0 0 4
0 1 2
1 0 1
1 1 0

B E fbe

0 0 3
0 1 2
1 0 1
1 1 0

C D fcd

0 0 1
0 1 4
1 0 0
1 1 0

E F fef

0 0 1
0 1 0
1 0 0
1 1 2

AOR

0AND

BOR

0AND

OR E

OR

AND

AND 0 1

C

D D

0 1 0 1

0 1

1

E

F F

0 1 0 1

0 1

C

D D

0 1 0 1

0 1

1

B

0

E

F F

0 1 0 1

0 1

C

0 1

1

E

0 1

C

0 1

B C Value
0 0
0 1
1 0
1 1 Context minimal AND/OR search graph

Cache table for D

Objective function:

IJCAI 2015

How Big Is The Context?

● Theorem: The maximum context size for a
pseudo tree is equal to the treewidth of the
graph along the pseudo tree.

C

HK

D

M

F

G

A

B

E

J

O

L

N

P

[AB]

[AF]
[CHAE]

[CEJ]

[CD]

[CHAB]

[CHA]

[CH]

[C]

[]

[CKO]

[CKLN]

[CKL]

[CK]

[C]

(C K H A B E J L N O D P M F G)

B A

C

E

F G

H

J

D

K M

L

N

O
P

max context size = treewidth

IJCAI 2015

Complexity of AND/OR Graph Search

AND/OR graph OR graph

Space

Time

d = domain size
w* = induced width

n = number of variables
pw* = pathwidth

w* ≤ pw* ≤ w* log n

IJCAI 2015

All Four Search Spaces

Full OR search tree

126 nodes

0 1 0 1 0 1 0 1

0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

0 1 0 1 0 1 0 10 1 0 1 0 1 0 1 0 1 0 1 0 1 0 10 1 0 1 0 1 0 1 0 1 0 1 0 1 0 10 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

0 1 0 1

C

D

F

E

B

A 0 1

Full AND/OR search tree

54 AND nodes

AOR

0AND

BOR

0AND

OR E

OR F F

AND 0 1 0 1

AND 0 1

C

D D

0 1 0 1

0 1

1

E

F F

0 1 0 1

0 1

C

D D

0 1 0 1

0 1

1

B

0

E

F F

0 1 0 1

0 1

C

D D

0 1 0 1

0 1

1

E

F F

0 1 0 1

0 1

C

D D

0 1 0 1

0 1

Context minimal OR search graph

28 nodes

0 1 0 1 0 1 0 1

0 1 0 1 0 1 0 1

0 1

0 1 0 1

0 1 0 1

C

D

F

E

B

A 0 1

Context minimal AND/OR search graph

18 AND nodes

AOR
0AND
BOR

0AND

OR E

OR F F

AND
0 1

AND 0 1

C

D D

0 1

0 1

1

EC

D D

0 1

1

B

0

E

F F

0 1

C

1

EC

IJCAI 2015

Outline

● Introduction
● Inference
● Bounds and heuristics
● AND/OR Search

– AND/OR Search Spaces

– AND/OR Branch and Bound

– Best-First AND/OR Search

– Advanced Searches and Tasks

● Exploiting parallelism
● Software

IJCAI 2015

Classic Depth-First Branch and Bound

n

g(n) : cost of the path from root to n

 : under-estimates optimal cost below n

Prune if

(UB) Upper Bound = best solution so far

Each node is a COP subproblem
(defined by current conditioning)

(lower bound)

IJCAI 2015

Partial Solution Tree

0

D

0

0

A

B C

0

0

A

B C

00

D

1

(A=0, B=0, C=0, D=1)

0

A

B C

01

D

0
(A=0, B=1, C=0, D=0)

0

A

B C

01

D

1

(A=0, B=1, C=0, D=1)

A

B C

D

Pseudo tree

(A=0, B=0, C=0, D=0)

Extension(T’) – solution trees that extend T’

IJCAI 2015

Exact Evaluation Function

OR

AND

OR

AND

OR

OR

AND

AND

A

0

B

0

D

E E

0 1 0 1

0 1

C

1

1

6 4 8 5
4 5

4 5

2 4

9

9

2 5 0 0

0 0

0

1

0

0

D

0

C

1

v(D,0)

3

3 5 0

0

9

tip nodes

F

1

3

3 5

0

F v(F)

A

B

C

D E

F

A

B

C D

E

F

f*(T’) = w(A,0) + w(B,1) + w(C,0) + w(D,0) + v(D,0) + v(F)

A B F f2(ABF)

0 0 0 3
0 0 1 5
0 1 0 1
0 1 1 4
1 0 0 6
1 0 1 5
1 1 0 6
1 1 1 5

B D E f3(BDE)

0 0 0 6
0 0 1 4
0 1 0 8
0 1 1 5
1 0 0 9
1 0 1 3
1 1 0 7
1 1 1 4

A B C f1(ABC)

0 0 0 2
0 0 1 5
0 1 0 3
0 1 1 5
1 0 0 9
1 0 1 3
1 1 0 7
1 1 1 2

IJCAI 2015

Exact Evaluation Function

OR

AND

OR

AND

OR

OR

AND

AND

A

0

B

0

D

E E

0 1 0 1

0 1

C

1

1

6 4 8 5
4 5

4 5

2 4

9

9

2 5 0 0

0 0

0

1

0

0

D

0

C

1

h(D,0) = 4

3

3 5 0

0

9

tip nodes

F

1

3

3 5

0

F h(F) = 5

A

B

C

D E

F

A

B

C D

E

F

f(T’) = w(A,0) + w(B,1) + w(C,0) + w(D,0) + h(D,0) + h(F) = 12 ≤ f*(T')

A B F f2(ABF)

0 0 0 3
0 0 1 5
0 1 0 1
0 1 1 4
1 0 0 6
1 0 1 5
1 1 0 6
1 1 1 5

B D E f3(BDE)

0 0 0 6
0 0 1 4
0 1 0 8
0 1 1 5
1 0 0 9
1 0 1 3
1 1 0 7
1 1 1 4

A B C f1(ABC)

0 0 0 2
0 0 1 5
0 1 0 3
0 1 1 5
1 0 0 9
1 0 1 3
1 1 0 7
1 1 1 2

IJCAI 2015

AND/OR Branch and Bound Search

OR

AND

OR

AND

OR

OR

AND

AND

A

0

B

0

D

E E

0 1 0 1

0 1

C

1

1

∞ 3 ∞ 4

3 4

3 4

∞ 4

∞

5

5

5

∞ ∞ 1 ∞

0

5

0

0

111

0

0

D

E E

0 1 0 1

0 1

C

1

∞ 3 ∞ 4

3 4

3 4

2 3

∞ 2 0 2

0

B

0 111

11

0 0

f(T’) ≥ UB

UB (best solution found so far)

IJCAI 2015

AND/OR Branch and Bound (AOBB)

● Associate each node n with a heuristic lower
bound h(n) on v(n)

● EXPAND (top-down)
– Evaluate f(T') and prune search if f(T') ≥ UB

– Generate successors of the tip node n

● UPDATE (bottom-up)
– Update value of the parent p of n

● OR nodes: minimization
● AND nodes: summation

[Marinescu and Dechter, 2005; 2009]

IJCAI 2015

AND/OR Branch and Bound with Caching

● Associate each node n with a heuristic lower bound
h(n) on v(n)

● EXPAND (top-down)
– Evaluate f(T') and prune search if f(T') ≥ UB

– If not in cache, generate successors of the tip node n

● UPDATE (bottom-up)
– Update value of the parent p of n

● OR nodes: minimization
● AND nodes: summation

– Cache value of n based on context

[Marinescu and Dechter, 2006; 2009]

IJCAI 2015

Breadth-Rotating AOBB
● AND/OR decomposition vs. depth-first search:

– Compromises anytime property of AOBB.

IJCAI 2015

Breadth-Rotating AOBB
● AND/OR decomposition vs. depth-first search:

– Compromises anytime property of AOBB.

● Breadth-Rotating AOBB:
– Combined breadth/depth-first schedule.

– Maintains depth-first complexity.

– Superior experimental results.

IJCAI 2015

Breadth-Rotating AOBB
● AND/OR decomposition vs. depth-first search:

– Compromises anytime property of AOBB.

● Breadth-Rotating AOBB:
– Combined breadth/depth-first schedule.

– Maintains depth-first complexity.

– Superior experimental results.

IJCAI 2015

Breadth-Rotating AOBB
● AND/OR decomposition vs. depth-first search:

– Compromises anytime property of AOBB.

● Breadth-Rotating AOBB:
– Combined breadth/depth-first schedule.

– Maintains depth-first complexity.

– Superior experimental results.

IJCAI 2015

Breadth-Rotating AOBB
● AND/OR decomposition vs. depth-first search:

– Compromises anytime property of AOBB.

● Breadth-Rotating AOBB:
– Combined breadth/depth-first schedule.

– Maintains depth-first complexity.

– Superior experimental results.

IJCAI 2015

Breadth-Rotating AOBB
● AND/OR decomposition vs. depth-first search:

– Compromises anytime property of AOBB.

● Breadth-Rotating AOBB:
– Combined breadth/depth-first schedule.

– Maintains depth-first complexity.

– Superior experimental results.

● Won PASCAL'11 Inference Challenge MPE
track.

IJCAI 2015

Mini-Bucket Heuristics for AND/OR Search

● The depth-first and best-first AND/OR search
algorithms use h(n) that can be computed:
– Static Mini-Bucket Heuristics

● Pre-compiled
● Reduced computational overhead
● Less accurate
● Static variable ordering

– Dynamic Mini-Bucket Heuristics
● Computed dynamically, during search
● Higher computational overhead
● High accuracy
● Dynamic variable ordering

IJCAI 2015

Bucket Elimination

A B

CD

E

F

G

A

B

C F

GD E

Ordering: (A, B, C, D, E, F, G)

A

f(A,B)B

f(B,C)C f(B,F)F

f(A,G)
f(F,G)

Gf(B,E)
f(C,E)

Ef(A,D)
f(B,D)
f(C,D)

D

hG (A,F)

hF (A,B)

hB (A)

hE (B,C)hD (A,B,C)

hC (A,B)

Exact evaluation of (A=a, B=b) below C:
h*(a, b, C) = hD(a, b, C) + hE(b, C)

IJCAI 2015

Static Mini-Bucket Heuristics

A B

CD

E

F

G

A

B

C F

GD E

Ordering: (A, B, C, D, E, F, G)

A

f(A,B)B

f(B,C)C f(B,F)F

f(A,G)
f(F,G)

Gf(B,E)
f(C,E)

Ef(B,D)
f(C,D)

D

hG (A,F)

hF (A,B)

hB (A)

hE (B,C)hD (B,C)

hC (B)

hD (A)

f(A,D)D

mini-buckets

MBE(3)

h(a, b, C) = hD(a) + hD(b, C) + hE(b, C)
 ≤ h*(a, b, C)

IJCAI 2015

Dynamic Mini-Bucket Heuristics

A B

CD

E

F

G

A

B

C F

GD E

Ordering: (A, B, C, D, E, F, G)

A

f(a,b)B

f(b,C)C f(b,F)F

f(a,G)
f(F,G)

Gf(b,E)
f(C,E)

Ef(a,D)
f(b,D)
f(C,D)

D

hG (F)

hF ()

hB ()

hE (C)hD (C)

hC ()

MBE(3)

h(a, b, C) = hD(C) + hE(C)
 = h*(a, b, C)

IJCAI 2015

Dynamic Variable Orderings

● Variable ordering heuristics
– Semantic-based

● Aim at shrinking the size of the search space based on
context and current value assignments

– e.g., min-domain, min-dom/wdeg, min reduced cost

– Graph-based
● Aim at maximizing the problem decomposition

– e.g., pseudo tree arrangement

IJCAI 2015

Partial Variable Orderings (PVO)

A

E

C

B

F

D

Primal graph

A

D

B

EC

F

B

D

A

EC

F

Variable Groups/Chains:
• {A,B}
• {C,D}
• {E,F}

Instantiate {A,B}
before {C,D} and {E,F}

*{A,B} is a separator/chain

Variables on chains
in the pseudo tree
can be instantiated
dynamically, based
on some semantic
ordering heuristic

* Similar idea is exploited by BTD (Backtracking with Tree Decomposition)
[Jegou and Terrioux, 2004]

IJCAI 2015

Full Dynamic Variable Ordering (DVO)
A

D

B C

E F

H

G

DA={0,1} DB={0,1,2}
DE={0,1,2,3}
DC=DD=DF=DG=DH=DE

Domains

A B f(AB)

0 0 3
0 1 8
0 2 8
1 0 4
1 1 0
1 2 6

A E f(AE)

0 0 0
0 1 5
0 2 1
0 3 4
1 0 8
1 1 8
1 2 0
1 3 5

Cost functions

A

B

D

C

F

P1 P2

H

E

G

0

0

1

E

1

B

1

D

C

F

P1 P2

H G

* Similar idea exploited in #SAT [Bayardo and Pehoushek, 2000]

IJCAI 2015

Dynamic Separator Ordering (DSO)

A

D

B I

E F

H

G

C

Separator

Primal graph

A

B

C

P1

H

E

G

P2

D

I

F

C
P

Separator variables are
instantiated dynamically

Constraint Propagation may create singleton
variables in P1 and P2 (changing the problem’s

structure), which in turn may yield smaller separators

* Similar idea exploited in SAT [Li and val Beek, 2004]

IJCAI 2015

Backtrack with Tree Decomposition

A

E

C

B

F

D

C1

C2

C3

C4
C2

C1 C3

C4

AB

AE

BC

tree decomposition (w=2)

A

D

B

EC

F

pseudo tree (w=2)

[]

[A]

[AB]

[AE][BC]

[AB]

BTD:
• AND/OR graph search (caching on

separators)
• Partial variable ordering (dynamic

inside clusters)
• Maintaining local consistency

[Jegou and Terrioux, 2004]

IJCAI 2015

Backtrack with Tree Decomposition

● Before the search
– Merge clusters with a separator size > p

– Time O(k exp(w*)), Space O(exp(p))

– More freedom for variable ordering heuristics

● Properties
– BTD(-1) is Depth-First Branch and Bound

– BTD(0) solves connected components independently

– BTD(1) exploits bi-connected components

– BTD(s) is Backtrack with Tree Decomposition
(s: largest separator size)

IJCAI 2015

Outline

● Introduction
● Inference
● Bounds and heuristics
● AND/OR Search

– AND/OR Search Spaces

– AND/OR Branch and Bound

– Best-First AND/OR Search

– Advanced Searches and Tasks

● Exploiting parallelism
● Software

IJCAI 2015

Outline

● Introduction
● Inference
● Bounds and heuristics
● AND/OR Search

– AND/OR Search Spaces

– AND/OR Branch and Bound

– Best-First AND/OR Search

– Advanced Searches and Tasks

● Exploiting parallelism
● Software

IJCAI 2015

Basic Heuristic Search Schemes

Heuristic function computes a lower bound on the best extension of
partial configuration and can be used to guide heuristic search.
We focus on:

1. Branch-and-Bound
Use heuristic function to
prune the depth-first search tree
Linear space

2. Best-First Search
Always expand the node with
the lowest heuristic value
Needs lots of memory

IJCAI 2015

Best-First Principle

● Best-first search expands first the node with the best
heuristic evaluation function among all nodes
encountered so far

● Never expands nodes whose cost is beyond the
optimal one, unlike depth-first algorithms [Dechter and Pearl,
1985]

● Superior among memory intensive algorithms
employing the same heuristic evaluation function

IJCAI 2015

Best-First AND/OR Search (AOBF)

● Maintains the explicated AND/OR search graph in memory
● Top-Down Step (EXPAND)

– Trace down marked connectors from root
● E.g., best partial solution tree

– Expand a tip node n by generating its successors n'

– Associate each successor with heuristic estimate h(n')
● Initialize q(n) = h(n') (q-value q(n) is a lower bound on v(n)

● Bottom-Up Step (UPDATE)
– Update node values q(n)

● OR nodes: minimization
● AND nodes: summation

– Mark the most promissing partial solution tree from the root

– Label the nodes as SOLVED:
● OR node is SOLVED if marked child is SOLVED
● AND node is SOLVED if all children are SOLVED

● Terminate when root node is SOLVED

[Marinescu and Dechter, 2006; 2009]

IJCAI 2015

AOBF versus AOBB

● AOBF with the same heuristic as AOBB is
likely to expand the smallest search space
– This translates into significant time savings

● AOBB can use far less memory by avoiding for
example dead-caches, whereas AOBF keeps
in memory the explicated search graph

● AOBB is anytime, whereas AOBF is not

IJCAI 2015

Recursive Best-First AND/OR Search

● AND/OR search algorithms (AOBB and AOBF)
– AOBB (depth-first): memory efficient but may

explore many suboptimal subspaces

– AOBF (best-first): explores the smallest search
space but may require huge memory

● Recursive best-first search for AND/OR graphs
– Requires limited memory (even linear)

– Nodes are explored in best-first order

– Main issue: some nodes will be re-expanded (want to
minimize this)

IJCAI 2015

Recursive Best-First AND/OR Search

● Transform best-first search (AO* like) into depth-first search
using a threshold controlling mechanism (explained next)
– Based on Korf's classic RBFS

– Adapted to the context minimal AND/OR graph

● Nodes are still expanded in best-first order
● Node values are updated in the usual manner based on the

values of their successors
– OR nodes by minimization

– AND nodes by summation

● Some nodes will be re-expanded
– Use caching (limited memory) based on contexts

– Use overestimation of the threshold to minimize node re-expansions

[Kishimoto and Marinescu, 2014]

IJCAI 2015

RBFAOO – Example (1)
A

0 1

1 1

h = 4h = 2
θ = 4

● Expand OR node A by generating its AND successors: (A,0) and (A,1)
● Best successor is (A,0)
● Set threshold θ(A,0) = 4 – indicates next best successor is (A,1)

● We can backtrack to (A,1) if the updated cost of the subtree below (A,0)
exceeds the threshold θ = 4

IJCAI 2015

RBFAOO – Example (2)
A

0 1

1 1

h = 4h = 2
θ = 4

B C h = 2h = 1

q = 3

● Expand AND node (A,0) by generating its OR successors: B and C
● Update node value q(A,0) = h(B) + h(C) = 3 – threshold OK

IJCAI 2015

RBFAOO – Example (3)
A

0 1

1 1

h = 4h = 2
θ = 4

B C h = 2h = 1

0 h = 3

1

q = 4

q = 6

● Expand OR node B by generating its AND successor: (B,0)
● Update node values q(B) = 4 and q(A,0) = 6 – threshold NOT OK

q(A,0) = 6 > θ(A,0) = 4
(backtrack)

IJCAI 2015

RBFAOO – Example (4)
A

0 1

1 1

h = 4h = 2

B C h = 2h = 1

0 h = 3

1

q = 4

q = 6
θ = 6

● Backtrack to (A,0) and select next best node (A,1)
● Set threshold θ(A,1) = 6 (updated value of the left subtree)
● Cache (minimize re-expansion) or discard left subtree

IJCAI 2015

RBFAOO – Overestimation
A

0 1

1 1

h = 4h = 2
θ = 4

q ≥ θ

(q = 6)

A

0 1

1 1

h = 4h = 2
θ = 6

q ≥ θ

(q = 7)

A

0 1

1 1

h = 4h = 2
θ + δ = 6

q* = 6

● Some of the nodes in the subtree below (A,0) may be re-expanded
● Simple overestimation scheme for minimizing the node re-expansions
● Inflate the threshold with some small δ: θ' = θ + δ (δ > 0)

● In practice, we determine δ experimentally (e.g., δ = 1 worked best)

IJCAI 2015

Empirical Evaluation

Grid and Pedigree benchmarks; Time limit 1 hour.

IJCAI 2015

Outline

● Introduction
● Inference
● Bounds and heuristics
● AND/OR Search

– AND/OR Search Spaces

– AND/OR Branch and Bound

– Best-First AND/OR Search

– Advanced Searches and Tasks

● Exploiting parallelism
● Software

IJCAI 2015

Marginal MAP

● Occurs in many applications involving hidden variables
● Seeks a partial configuration of variables with maximum

marginal probability
● Complexity: NPPP-complete
● State-of-the-art is DFS BnB (over the MAP variables)

– Guided by unconstrained join-tree based upper bounds

● Advances
– AND/OR Branch and Bound and Best-First AND/OR Search

algorithms

– Heuristics based on Weighted Mini-Buckets
● WMB-MM: single pass with cost-shifting by moment matching
● WMB-JG: iterative updates by message passing along the join-graph

IJCAI 2015

Marginal MAP

● Occurs in many applications involving hidden variables
● Seeks a partial configuration of variables with maximum

marginal probability
● Complexity: NPPP-complete
● State-of-the-art is DFS BnB (over the MAP variables)

– Guided by unconstrained join-tree based upper bounds

● Advances
– AND/OR Branch and Bound and Best-First AND/OR Search

algorithms

– Heuristics based on Weighted Mini-Buckets
● WMB-MM: single pass with cost-shifting by moment matching
● WMB-JG: iterative updates by message passing along the join-graph

IJCAI 2015

AND/OR Search Space for MMAP

A B

C

D

E

F G

H

A

B

C D

E FG

H

MAP variables

SUM variables

constrained pseudo tree

primal graph

IJCAI 2015

AND/OR Search Space for MMAP

A

10

B

10

DC

10 10

E

10

DC

10

E

10

10

B

10

DC

10 10

DC

10 10

E

10

E

10

E

10

E

10

E

10

E

10

G

10

F

10

H

10

H

10

G

10

F

10

G

10

F

10

G

10

F

10

H

10

H

10

● Node types
– OR (MAP): max
– OR (SUM): sum
– AND: multiplication

● Arc weights
– derived from input F

● Problem decomposition
over MAP variables

IJCAI 2015

AND/OR Search Algorithms

● AOBB: Depth-First AND/OR Branch and Bound
– Depth-first traversal of the AND/OR search graph

– Prune only at OR nodes that correspond to MAP variables

– Cost of MAP assignment obtained by searching the SUM sub-problem

● AOBF: Best First AND/OR Search
– Best-first (AO*) traversal of the AND/OR space corresponding to the

MAP variables

– SUM subproblem solved exactly

● RBFAOO: Recursive Best-First AND/OR Search
– Recursive best-first traversal of the AND/OR graph

– For SUM subproblems, the threshold is set to ∞ (equivalent to depth-
first search)

[Marinescu, Dechter and Ihler; 2014; 2015]

IJCAI 2015

Quality of the Upper Bounds

Average relative error wrt tightest upper bound. 10 iterations for WMB-JG(i).

IJCAI 2015

AOBB versus BB

Number of instances solved and median CPU time (sec). 10 iterations for WMB-JG(i).

IJCAI 2015

AOBF/RBFAOO versus AOBB

Number of instances solved and median CPU time (sec). Time limit 1 hour.

IJCAI 2015

Searching for M Best Solutions

● New inference and search based algorithms for the
task of finding the m best solutions
– Search: m-A*, m-BB

– Inference: elim-m-opt, BE+m-BF

● Extended m-A* and m-BB to AND/OR search
spaces for graphical models, yielding m-AOBB and
m-AOBF

● Competitive and often superior to alternative
(approximate) approaches based on LP relaxations
– e.g., [Fromer and Globerson, 2009], [Batra, 2012]

[Dechter, Flerova and Marinescu; 2012]

IJCAI 2015

Searching for M Best Solutions
B

et
te

r
co

m
p

le
xi

ty

Exact algorithms!

IJCAI 2015

Empirical Evaluation

Grid instances; Time limit = 3h; Memory bound = 4 GB

IJCAI 2015

Hybrid of Variable Elimination and Search

● Tradeoff space and time

IJCAI 2015

Search Basic Step: Conditioning
Variable Branching by Conditioning

C

ED

BA

IJCAI 2015

Search Basic Step: Conditioning
Variable Branching by Conditioning

C

ED

BSelect a variable A

IJCAI 2015

Search Basic Step: Conditioning
Variable Branching by Conditioning

C

ED

B

…...A = 0
A = 1

A = k

…...C

ED

B

C

ED

B

C

ED

B

Select a variable A

IJCAI 2015

Search Basic Step: Conditioning
Variable Branching by Conditioning

C

ED

B

…...A = 0
A = 1

A = k

…...C

ED

B

C

ED

B

C

ED

B

Select a variable General principle:

Condition until tractable

Solve each sub-problem
efficiently

A

IJCAI 2015

The Cycle-Cutset Scheme

Space: exp(i), Time: O(exp(i+c(i))

• Cycle-cutset
• i-cutset
• C(i)-size of i-cutset

Condition until Treeness

E

D

F

C

A

B Cutset part

Tree part

E

D

F C

A

B

E

D

F

C

A

B

A A C

C

IJCAI 2015

Eliminate First

IJCAI 2015

Eliminate First

IJCAI 2015

Eliminate First

Solve the rest of the problem
by any means

IJCAI 2015

Hybrid Variants

● Condition, condition, condition, ... and then
only eliminate (w-cutset, cycle-cutset)

● Eliminate, eliminate, eliminate, ... and then
only search

● Interleave conditioning and elimination steps
(elim-cond(i), VE+C)

IJCAI 2015

Interleaving Conditioning and Elimination

[Larrosa and Dechter, 2002]

IJCAI 2015

Interleaving Conditioning and Elimination

IJCAI 2015

Interleaving Conditioning and Elimination

IJCAI 2015

Interleaving Conditioning and Elimination

IJCAI 2015

Interleaving Conditioning and Elimination

IJCAI 2015

Interleaving Conditioning and Elimination

IJCAI 2015

Interleaving Conditioning and Elimination

...

...

IJCAI 2015

Boosting Search with Variable Elimination

● At each search node
– Eliminate all unassigned variables with degree ≤ p

– Select an assigned variable A

– Branch on the values of A

● Properties
– BB+VE(-1) is Depth-First Branch and Bound

– BB+VE(w) is Variable Elimination

– BB+VE(1) is similar to Cycle-Cutset

– BB+VE(2) is well suited with soft local consistencies (add
binary constraints only, independent of elimination order)

[Larrosa and Dechter, 2003]

IJCAI 2015

Mendelian Error Detection

[Sanchez et al, 2008]

● Given a pedigree and partial
observations (genotypings)

● Find the erroneous genotypings, such
that their removal restores
consistency

● Checking consistency is NP-complete [Aceto et al, 2004]
● Minimize the number of genotypings to be removed
● Maximize the joint probability of true genotypes (MPE/MAP)

Pedigree problem size: n ≤ 20,000; k = 3-66; e(3) ≤ 30,000

1
2/2 2
1
2/2

7
2/2

6
2/2

3
2/2

10
2/2

11
1/2

12
2/3

8

5 4

9

IJCAI 2015

Pedigree
• toulbar2 v0.5 with EDAC and binary branching
• Minimize the number of genotypings to be removed
• CPU time to find and prove optimality on a 3 GHz computer with 16 GB

BB with dom/deg
BB with last conflict
BB+VE(2) with dom/deg
BB+VE(2) with last conflict

IJCAI 2015

Outline

● Introduction
● Inference
● Bounds and heuristics
● AND/OR Search
● Exploiting parallelism
● Software

IJCAI 2015

Outline

● Introduction
● Inference
● Search
● Lower bounds and relaxations
● Exploiting parallelism

– Distributed and parallel search
● Software

IJCAI 2015

Contributions
● Propose parallel AOBB, first of its kind.

– Runs on computational grid.

– Extends parallel tree search paradigm.

– Two variants with different parallelization logic.

● Analysis of schemes' properties:

– Performance considerations and trade-offs.
● Granularity vs. overhead and redundancies.

● Large-scale experimental evaluation:

– Good parallel performance in many cases.

– Analysis of some potential performance pitfalls.

IJCAI 2015

Context and Related Work
● Task parallelism (vs. data parallelism):

– Extensive computation on small input.

IJCAI 2015

Context and Related Work
● Task parallelism (vs. data parallelism):

– Extensive computation on small input.

● Computational grid framework:

– Independent hosts, limited or no communication.

IJCAI 2015

Context and Related Work
● Task parallelism (vs. data parallelism):

– Extensive computation on small input.

● Computational grid framework:

– Independent hosts, limited or no communication.

● Parallel tree search (“stack splitting”):

– Typically uses shared memory for dynamic load balancing
and cost bound updates for BaB.

● Not feasible in grid setup.

IJCAI 2015

Context and Related Work
● Task parallelism (vs. data parallelism):

– Extensive computation on small input.

● Computational grid framework:

– Independent hosts, limited or no communication.

● Parallel tree search (“stack splitting”):

– Typically uses shared memory for dynamic load balancing
and cost bound updates for BaB.

● Not feasible in grid setup.

● Motivation: Superlink Online.

– Distributed linkage (likelihood) computation.

IJCAI 2015

Parallel AOBB Illustrated
● Master process applies partial condi-

tioning to obtain parallel subproblems.

IJCAI 2015

Parallel AOBB Illustrated
● Master process applies partial condi-

tioning to obtain parallel subproblems.

P
artial

C
onditioning

IJCAI 2015

Parallel AOBB Illustrated
● Master process applies partial condi-

tioning to obtain parallel subproblems.

P
artial

C
onditioning

IJCAI 2015

Parallel AOBB Illustrated
● Master process applies partial condi-

tioning to obtain parallel subproblems.

Master search space

P
artial

C
onditioning

IJCAI 2015

Parallel AOBB Illustrated
● Master process applies partial condi-

tioning to obtain parallel subproblems.

Master search space

P
artial

C
onditioning

Parallelization frontier

IJCAI 2015

Parallel AOBB Illustrated
● Master process applies partial condi-

tioning to obtain parallel subproblems.

Master search space

8 independent subproblem search spaces

P
artial

C
onditioning

Parallelization frontier

IJCAI 2015

Parallel AOBB Illustrated
● Master process applies partial condi-

tioning to obtain parallel subproblems.

Master search space

8 independent subproblem search spaces

P
artial

C
onditioning

Parallelization frontier

IJCAI 2015

Parallel AOBB Illustrated
● Master process applies partial condi-

tioning to obtain parallel subproblems.

Master search space

8 independent subproblem search spaces

P
artial

C
onditioning

Parallelization frontier

Loss of caching
across subproblems!

IJCAI 2015

Fixed-depth Parallel AOBB
● Algorithm receives cutoff depth d as input:

– Expand nodes centrally until depth d.

– At depth d, submit to grid job queue.

IJCAI 2015

Fixed-depth Parallel AOBB
● Algorithm receives cutoff depth d as input:

– Expand nodes centrally until depth d.

– At depth d, submit to grid job queue.

IJCAI 2015

Fixed-depth Parallel AOBB
● Algorithm receives cutoff depth d as input:

– Expand nodes centrally until depth d.

– At depth d, submit to grid job queue.

● Explored subproblem search spaces potentially
very unbalanced.

IJCAI 2015

Fixed-depth Parallel AOBB
● Algorithm receives cutoff depth d as input:

– Expand nodes centrally until depth d.

– At depth d, submit to grid job queue.

● Explored subproblem search spaces potentially
very unbalanced.

IJCAI 2015

Fixed-depth Parallel AOBB
● Algorithm receives cutoff depth d as input:

– Expand nodes centrally until depth d.

– At depth d, submit to grid job queue.

● Explored subproblem search spaces potentially
very unbalanced.

IJCAI 2015

Variable-depth Parallel AOBB
● Given subproblem count p and estimator N :

– Iteratively deepen frontier until size p reached:
● Pick subproblem n with largest estimate N(n) and split.

– Submit subproblems into job queue by descending
complexity estimates.

IJCAI 2015

Variable-depth Parallel AOBB
● Given subproblem count p and estimator N :

– Iteratively deepen frontier until size p reached:
● Pick subproblem n with largest estimate N(n) and split.

– Submit subproblems into job queue by descending
complexity estimates.

● Hope to achieve better subproblem balance.

IJCAI 2015

Variable-depth Parallel AOBB
● Given subproblem count p and estimator N :

– Iteratively deepen frontier until size p reached:
● Pick subproblem n with largest estimate N(n) and split.

– Submit subproblems into job queue by descending
complexity estimates.

● Hope to achieve better subproblem balance.

IJCAI 2015

Variable-depth Parallel AOBB
● Given subproblem count p and estimator N :

– Iteratively deepen frontier until size p reached:
● Pick subproblem n with largest estimate N(n) and split.

– Submit subproblems into job queue by descending
complexity estimates.

● Hope to achieve better subproblem balance.

IJCAI 2015

Variable-depth Parallel AOBB
● Given subproblem count p and estimator N :

– Iteratively deepen frontier until size p reached:
● Pick subproblem n with largest estimate N(n) and split.

– Submit subproblems into job queue by descending
complexity estimates.

● Hope to achieve better subproblem balance.

IJCAI 2015

Aside: Modeling AOBB Complexity
● Model number of nodes N(n) in subproblem as

exp. function of subproblem features φi(n) :

N (n) = exp (∑i
λiϕi(n))

IJCAI 2015

Aside: Modeling AOBB Complexity
● Model number of nodes N(n) in subproblem as

exp. function of subproblem features φi(n) :

● Logarithm yields linear regression problem.
– Minimize MSE with Lasso regularization. [Tibshirani]

– Full details:
● “A Case Study in Complexity Estimation: Towards Parallel

Branch-and-Bound over Graphical Models”, UAI 2012.

N (n) = exp(∑i
λ i ϕ i(n))

1
m∑ j=1

m
(∑i

λi ϕ i(nk)−log N (nk))
2
+ α∑i∣λ i∣

IJCAI 2015

35 Subproblem Features
● Characterize subproblem:

– Static, structural properties:
● Number of variables.
● Avg. and max. width.
● Height of sub pseudo tree.
● State space bound SS .

– Dynamic, runtime properties:
● Upper and lower bound

on subproblem cost.
● Pruning ratio and depth

of small AOBB probe.
– only 5n nodes, very fast.

IJCAI 2015

Example Estimation Results
● Across subproblems from several domains.

– Hold out test data for model learning.

IJCAI 2015

Assessing Parallel Performance
● Sequential AOBB performance baseline:

– Tseq: sequential runtime.

– Nseq: number of sequential node expansions.

IJCAI 2015

Assessing Parallel Performance
● Sequential AOBB performance baseline:

– Tseq: sequential runtime.

– Nseq: number of sequential node expansions.

● Parallel AOBB performance metrics:

– Tpar: parallel runtime including central
preprocessing.

– Spar: Parallel speedup Tseq / Tpar .

IJCAI 2015

Assessing Parallel Performance
● Sequential AOBB performance baseline:

– Tseq: sequential runtime.

– Nseq: number of sequential node expansions.

● Parallel AOBB performance metrics:

– Tpar: parallel runtime including central
preprocessing.

– Spar: Parallel speedup Tseq / Tpar .

– Npar: Node expansions across all subproblems.

– Opar: Relative parallel overhead Npar / Nseq .

IJCAI 2015

Assessing Parallel Performance
● Sequential AOBB performance baseline:

– Tseq: sequential runtime.

– Nseq: number of sequential node expansions.

● Parallel AOBB performance metrics:

– Tpar: parallel runtime including central preprocessing.

– Spar: Parallel speedup Tseq / Tpar .

– Npar: Node expansions across all subproblems.

– Opar: Relative parallel overhead Npar / Nseq .

– Upar: Avg. processor utilization, relative to longest.

IJCAI 2015

Performance Considerations
● Amdahl's Law [1967]:

– “If a fraction p of a computation can be sped up by
a factor or s, the overall speedup cannot exceed
1/(1–p+p/s).”

● Example: 20 minute computation, 30 sec preprocessing.
Best speedup 40x (regardless of parallel CPUs).

IJCAI 2015

Performance Considerations
● Amdahl's Law [1967]:

– “If a fraction p of a computation can be sped up by a
factor or s, the overall speedup cannot exceed
1/(1–p+p/s).”

● Example: 20 minute computation, 30 sec preprocessing.
Best speedup 40x (regardless of parallel CPUs).

● Implication of overhead Opar :

– Proposition: assuming parallel overhead o and
execution on p CPUs, speedup is bounded by p/o .

● Example: 500 CPUs, overhead 2 → best speedup 250.
● In practice even lower due to load balancing,

communication delays, etc.

IJCAI 2015

Parallel AOBB Performance Factors
● Distributed System Overhead:

– Master preprocessing and parallelization decision.

– Repeated preprocessing in workers (mini-buckets).

– Communication and scheduling delays.

IJCAI 2015

Parallel AOBB Performance Factors
● Distributed System Overhead:

– Master preprocessing and parallelization decision.

– Repeated preprocessing in workers (mini-buckets).

– Communication and scheduling delays.

● Parallel search space redundancies:
– Impacted pruning, lack of bounds propagation.

● Local search for near-optimal initial bound.

– Loss of caching across parallel subproblems.
● Analyzed subsequently.

IJCAI 2015

Parallel AOBB Performance Factors
● Distributed System Overhead:

– Master preprocessing and parallelization decision.

– Repeated preprocessing in workers (mini-buckets).

– Communication and scheduling delays.

● Parallel search space redundancies:
– Impacted pruning, lack of bounds propagation.

● Local search for near-optimal initial bound.

– Loss of caching across parallel subproblems.
● Analyzed subsequently.

● Parallel AOBB is not “embarrassingly parallel”.

IJCAI 2015

Redundancy Analysis

IJCAI 2015

Redundancy Analysis

IJCAI 2015

Redundancy Analysis

Overall 50 AND nodes

IJCAI 2015

Redundancy Analysis

d=1

IJCAI 2015

Redundancy Analysis

d=1

IJCAI 2015

Redundancy Analysis

d=1

IJCAI 2015

Redundancy Analysis

d=1

IJCAI 2015

Redundancy Analysis

d=1

IJCAI 2015

Redundancy Analysis

d=1

IJCAI 2015

Redundancy Analysis

d=1

IJCAI 2015

Redundancy Analysis

d=1

IJCAI 2015

Redundancy Analysis

d=1

IJCAI 2015

Redundancy Analysis

d=1

Overall 78 AND nodes

IJCAI 2015

Redundancy Analysis

d=2

IJCAI 2015

Redundancy Analysis

Overall 102 AND nodes

d=2

IJCAI 2015

Redundancy Analysis

d=3

IJCAI 2015

Redundancy Analysis

Overall 70 AND nodesd=3

IJCAI 2015

Redundancy Quantied
● Definitions:

– wd(X) is size of context of X below level d.

– πd(X) is ancestor of X at level d.

● Underlying parallel search space size SSpar :

IJCAI 2015

Redundancy Quantied
● Definitions:

– wd(X) is size of context of X below level d.

– πd(X) is ancestor of X at level d.

● Underlying parallel search space size SSpar :
Conditioning space

IJCAI 2015

Redundancy Quantied
● Definitions:

– wd(X) is size of context of X below level d.

– πd(X) is ancestor of X at level d.

● Underlying parallel search space size SSpar :
Conditioning space Overall subproblem space

IJCAI 2015

Redundancy Quantied
● Definitions:

– wd(X) is size of context of X below level d.

– πd(X) is ancestor of X at level d.

● Underlying parallel search space size SSpar :
Conditioning space Overall subproblem space

IJCAI 2015

Redundancy Quantied
● Definitions:

– wd(X) is size of context of X below level d.

– πd(X) is ancestor of X at level d.

● Underlying parallel search space size SSpar :

– SSpar(0) = SSpar(h) = SSseq .

– SSpar(d) ≥ SSpar(0) for all d .

Conditioning space Overall subproblem space

IJCAI 2015

Redundancy vs. Parallelism
● Assume parallelism with sufficient CPUs.

– Consider conditioning space + max. subproblem.

Example revisited:

IJCAI 2015

Redundancy vs. Parallelism
● Assume parallelism with sufficient CPUs.

– Consider conditioning space + max. subproblem.

Example revisited:

IJCAI 2015

Redundancy vs. Parallelism
● Assume parallelism with sufficient CPUs.

– Consider conditioning space + max. subproblem.

Example revisited:

IJCAI 2015

Redundancy vs. Parallelism
● Assume parallelism with sufficient CPUs.

– Consider conditioning space + max. subproblem.

● But: doesn't capture explored search space.
– Can pruning compensate for redundancies?

Example revisited:

IJCAI 2015

Empirical Evaluation
● Parallel experiments over 75 benchmarks.

– Instances from four classes, with varying i-bound.

– Tseq from under 1 hour to over 2 weeks.

– Run with 20, 100, and 500 parallel CPUs.

IJCAI 2015

Empirical Evaluation
● Parallel experiments over 75 benchmarks.

– Instances from four classes, with varying i-bound.

– Tseq from under 1 hour to over 2 weeks.

– Run with 20, 100, and 500 parallel CPUs.

● Experimental Methodology:
– Apply different fixed-depth cutoff depths d.

– Use subproblem count p as var-depth input.

IJCAI 2015

Empirical Evaluation
● Parallel experiments over 75 benchmarks.

– Instances from four classes, with varying i-bound.

– Tseq from under 1 hour to over 2 weeks.

– Run with 20, 100, and 500 parallel CPUs.

● Experimental Methodology:
– Apply different fixed-depth cutoff depths d.

– Use subproblem count p as var-depth input.

● ~91 thousand CPU hours – over 10 years!
– Over 1400 parallel runs.

– Can only summarize some aspects here.

IJCAI 2015

Example Results
● Record overall parallel runtime / speedup.

– Lots of data!

IJCAI 2015

Example Results
● Record overall parallel runtime / speedup.

– Lots of data!

IJCAI 2015

Example: LargeFam3-15-59, i=19
● Sequential runtime

Tseq = 43,307 sec.

IJCAI 2015

Example: LargeFam3-15-59, i=19
● Sequential runtime

Tseq = 43,307 sec.

(Variable-depth)

(Fixed-depth)

IJCAI 2015

Example: Pedigree7, i=6
● Sequential runtime

Tseq = 118,383 sec.

IJCAI 2015

Example: Pedigree7, i=6
● Sequential runtime

Tseq = 118,383 sec.

(Variable-depth)

(Fixed-depth)

IJCAI 2015

Example: Pedigree7, i=6
● Sequential runtime

Tseq = 118,383 sec.

(Variable-depth)

(Fixed-depth)

IJCAI 2015

Example: Pedigree7, i=6
● Sequential runtime

Tseq = 118,383 sec.

IJCAI 2015

Example: Pedigree7, i=6
● Sequential runtime

Tseq = 118,383 sec.

(Variable-depth)

(Fixed-depth)

IJCAI 2015

Example: Pedigree7, i=6
● Sequential runtime

Tseq = 118,383 sec.

(Variable-depth)

(Fixed-depth)

IJCAI 2015

Example: LargeFam3-16-56, i=15
● Sequential runtime

Tseq = 1,891,710 sec.

IJCAI 2015

Example: LargeFam3-16-56, i=15
● Sequential runtime

Tseq = 1,891,710 sec.

(Variable-depth)

(Fixed-depth)

IJCAI 2015

Example: LargeFam3-16-56, i=15
● Sequential runtime

Tseq = 1,891,710 sec.

(Variable-depth)

(Fixed-depth)

IJCAI 2015

Example: Pdb1huw, i=3
● Sequential runtime

Tseq = 545,249 sec.

IJCAI 2015

Example: Pdb1huw, i=3
● Sequential runtime

Tseq = 545,249 sec.

(Variable-depth)

(Fixed-depth)

IJCAI 2015

Example: Pdb1huw, i=3
● Sequential runtime

Tseq = 545,249 sec.

(Variable-depth)

(Fixed-depth)

IJCAI 2015

Example: 75-25-1, i=14
● Sequential runtime

Tseq = 15,402 sec.

IJCAI 2015

Example: 75-25-1, i=14
● Sequential runtime

Tseq = 15,402 sec.

(Variable-depth)

(Fixed-depth)

IJCAI 2015

Example: 75-25-1, i=14
● Sequential runtime

Tseq = 15,402 sec.

(Variable-depth)

(Fixed-depth)

IJCAI 2015

Underlying vs. Explored Search
Space

● Compute SSpar bound (ahead of time).

– Plot against Npar for different i-bounds.

IJCAI 2015

Underlying vs. Explored Search
Space

● Compute SSpar bound (ahead of time).

– Plot against Npar for different i-bounds.

IJCAI 2015

Underlying vs. Explored Search
Space

● Compute SSpar bound (ahead of time).

– Plot against Npar for different i-bounds.

IJCAI 2015

Underlying vs. Explored Search
Space

● Compute SSpar bound (ahead of time).

– Plot against Npar for different i-bounds.

IJCAI 2015

Underlying vs. Explored Search
Space

● Compute SSpar bound (ahead of time).

– Plot against Npar for different i-bounds.

IJCAI 2015

Underlying vs. Explored Search
Space

● Compute SSpar bound (ahead of time).

– Plot against Npar for different i-bounds.

IJCAI 2015

Redundancies and Overhead Opar
● Assess parallel redundancies in practice.

– Node expansion overhead Opar = Npar / Nseq .

IJCAI 2015

Redundancies and Overhead Opar
● Assess parallel redundancies in practice.

– Node expansion overhead Opar = Npar / Nseq .

IJCAI 2015

Redundancies and Overhead Opar
● Assess parallel redundancies in practice.

– Node expansion overhead Opar = Npar / Nseq .

IJCAI 2015

Redundancies and Overhead Opar
● Assess parallel redundancies in practice.

– Node expansion overhead Opar = Npar / Nseq .

IJCAI 2015

Redundancies and Overhead Opar
● Assess parallel redundancies in practice.

– Node expansion overhead Opar = Npar / Nseq .

IJCAI 2015

Redundancies and Overhead Opar
● Assess parallel redundancies in practice.

– Node expansion overhead Opar = Npar / Nseq .

IJCAI 2015

Parallel Scaling Summary
● Plot speedup against CPU count.

– Trade off load balancing vs. overhead:
● #subproblems ≈ 10 × #CPUs

IJCAI 2015

Parallel Scaling Summary
● Plot speedup against CPU count.

– Trade off load balancing vs. overhead:
● #subproblems ≈ 10 × #CPUs

IJCAI 2015

Parallel Scaling Summary
● Plot speedup against CPU count.

– Trade off load balancing vs. overhead:
● #subproblems ≈ 10 × #CPUs

IJCAI 2015

Parallel Scaling Summary
● Plot speedup against CPU count.

– Trade off load balancing vs. overhead:
● #subproblems ≈ 10 × #CPUs

IJCAI 2015

Parallel Scaling Summary
● Plot speedup against CPU count.

– Trade off load balancing vs. overhead:
● #subproblems ≈ 10 × #CPUs

IJCAI 2015

Parallel Scaling Summary
● Plot speedup against CPU count.

– Trade off load balancing vs. overhead:
● #subproblems ≈ 10 × #CPUs

IJCAI 2015

Fixed-depth vs. Variable-depth
● Compare speedup of the two parallel schemes.

– Count cases that are 10% and 50% better.

IJCAI 2015

Outline

● Introduction
● Inference
● Bounds and heuristics
● AND/OR Search
● Exploiting parallelism
● Software

– UAI Probabilistic Inference Competition

IJCAI 2015

Software

● aolib
– http://graphmod.ics.uci.edu/group/Software

(standalone AOBB, AOBF solvers)

● daoopt
– https://github.com/lotten/daoopt

(distributed and standalone AOBB solver)

http://graphmod.ics.uci.edu/group/Software
https://github.com/lotten/daoopt

IJCAI 2015

UAI Probabilistic Inference Competitions

● 2006

● 2008

● 2011

● 2014

MPE/MAP MMAP

(aolib)

(aolib)

(daoopt)

(daoopt) (daoopt) (merlin)

IJCAI 2015

Conclusion

● Only a few principles
– Inference and search should be combined

● Time-space tradeoff

– AND/OR search should be used

– Caching in search should be used

– Parallel search should be used if a distributed
environment is available

