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Outline

● Introduction
– Graphical models

– Optimization tasks for graphical models

● Inference
– Variable Elimination, Bucket Elimination

● Bounds and heuristics
– Basics of search

– Bounded variable elimination and iterative cost shifting

● AND/OR Search
– AND/OR search spaces

– Depth-First Branch and Bound, Best-First search

● Exploiting parallelism
– Distributed and parallel search

● Software



IJCAI 2015

Combinatorial Optimization

Earth observing satellites Investments

Find an optimal schedule for the satellite
that maximizes the number of photographs
taken, subject to on-board recording capacity

How much to invest in each asset to earn 
8 cents per Invested dollar and the 
investment risk is minimized
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Combinatorial Optimization

Communications Bioinformatics

Assign frequencies to a set of radio links
such that interferencies are minimized

Find a joint haplotype configuration for
all members of the pedigree which
maximizes the probability of data
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Constrained Optimization

Power plant scheduling

Unit # Min Up 
Time

Min Down
Time

1 3 2

2 2 1

3 4 1

Variables: Domains:
Constraints: min-uptime, min-downtime
Power demand:

Objective:  minimize
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Constraint Optimization Problems

G

A

B C

D F

A B D Cost
1 2 3 3
1 3 2 2
2 1 3 
2 3 1 0
3 1 2 5
3 2 1 0

f(A,B,D) has scope {A,B,D}

Global Cost Function

Primal graph: 
 Variables   - nodes

 Functions  - arcs / cliques

-- variables

-- domains

-- cost functions

A finite COP is a triple                         where:
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Constraint Networks

C

A

B

D
E

F

G

A

B
D

C
G

F

E

Constraint graph

Map coloring

A B

red green

red blue

green red

green blue

blue red

blue green

Variables:    countries (A, B, C, etc.)

Values:        colors (red, green, blue)

Constraints: A ≠ B,   B ≠ D,   A ≠ D, etc.



IJCAI 2015

Probabilistic Networks

Smoking

Cancer Bronchitis

Dyspnoea

X-Ray

P(S)

P(B|S)P(C|S)

P(D|C,B)

P(X|C,S)

C B D=0 D=1

0 0 0.1 0.9

0 1 0.7 0.3

1 0 0.8 0.2

1 1 0.9 0.1

P(D|C,B)

MPE:  Find a maximum probability assignment, given evidence

        = Find 
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Monitoring Intensive-Care Patients

PCWP CO

HRBP

HREKG HRSAT

ERRCAUTERHRHISTORY

CATECHOL

SAO2 EXPCO2

ARTCO2

VENTALV

VENTLUNG VENITUBE

DISCONNECT

MINVOLSET

VENTMACHKINKEDTUBEINTUBATIONPULMEMBOLUS

PAP SHUNT

ANAPHYLAXIS

MINOVL

PVSAT

FIO2
PRESS

INSUFFANESTHTPR

LVFAILURE

ERRBLOWOUTPUTSTROEVOLUMELVEDVOLUME

HYPOVOLEMIA

CVP

BP

The “alarm” network – 37 variables, 509 parameters (instead of 237)
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Genetic Linkage Analysis

- 6 individuals
- Haplotype: {2, 3}
- Genotype: {6}
- Unknown

 2 1

 3 4

 5 6

? | A
? | B

? | ?
? | ?

? | ?
? | ?

A | a
B | b

A | A
B | b

A | a
B | b
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Pedigree: 6 people, 3 markers
L11m L11f

X11

L12m L12f

X12

L13m L13f

X13

L14m L14f

X14

L15m L15f

X15

L16m L16f

X16

S13m

S15m

S16mS15m

S15m

S15m

L21m L21f

X21

L22m L22f

X22

L23m L23f

X23

L24m L24f

X24

L25m L25f

X25

L26m L26f

X26

S23m

S25m

S26mS25m

S25m

S25m

L31m L31f

X31

L32m L32f

X32

L33m L33f

X33

L34m L34f

X34

L35m L35f

X35

L36m L36f

X36

S33m

S35m

S36mS35m

S35m

S35m
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Influence Diagrams

Test

Drill
Oil sale
policy

Test
result

Seismic
structure

Oil
underground

Oil
produced

Test
cost

Drill
cost

Sales
cost

Oil 
sales

Market
information

Task: find optimal policy

Chance variables:

Decision variables:

CPDs for chance variables:

Reward components:

Utility function:
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Graphical Models

● A graphical model (X, D, F):

–                                  variables

–                                  domains

–                                  functions
● (constraints, CPTs, CNFs, ...)

● Operators

– Combination

– Elimination (projection)

● Tasks

– Belief updating: 

– MPE/MAP:

– Marginal MAP:

– CSP: 

– WCSP: 

– MEU: 

A

D

B
C

E

F

A C F P(F|A,C)
0 0 0 0.14
0 0 1 0.96
0 1 0 0.40
0 1 1 0.60
1 0 0 0.35
1 0 1 0.65
1 1 0 0.72
1 1 1 0.68 )(   :   CAFf i 

A C F

red green blue
blue red red
blue blue green

green red blue

RelationCPT

Primal graph
(interaction graph)

● All these tasks are NP-hard
● Exploit problem structure
● Identify special cases
● Approximate
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Example Domains for Graphical Models

● Web Pages and Link Analysis
● Communication Networks (Cell phone fraud detection
● Natual Language Processing (e.g., information extraction and semantic 

parsing)
● Battlespace Awarness
● Epidemiological Studies
● Citation Networks
● Intelligence Analysis (terrorist networks)
● Financial Transactions (money laundering)
● Computational Biology
● Object Recognition and Scene Analysis
● ...
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Combinatorial Optimization Tasks

● Most Probable Explanation (MPE),                   
or Maximum A Posteriori (MAP)

● M Best MPE/MAP
● Marginal MAP (MMAP)
● Weighted CSPs (WCSP), Max-CSPs, Max-SAT
● Integer Linear Programs
● Maximum Expected Utility (MEU) 
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Outline

● Introduction

– Graphical models

– Optimization tasks for graphical models

– Solving optimization problems by inference and search

● Inference

● Bounds and heuristics

● AND/OR Search

● Exploiting parallelism

● Software
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Solution Techniques

Search: Conditioning

Complete

Incomplete

Simulated Annealing

Gradient Descent

Complete

Incomplete

Adaptive Consistency
Tree Clustering

Variable Elimination
Resolution

Local Consistency

Unit Resolution

Mini-bucket(i)

Stochastic Local Search
DFS search

Branch-and-Bound

A*

Inference: Elimination

Time: exp(treewidth)
Space:exp(treewidth)

Time: exp(n)
Space: linear

AND/OR search
Time: exp(treewidth*log n)

Space: linear

Hybrids

Space: exp(treewidth)
Time: exp(treewidth)

Time: exp(pathwidth)
Space: exp(pathwidth)
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Combination of Cost Functions

+

= 0 + 6

A B C f(A,B,C)

b b b 12

b b g 6

b g b 0

b g g 6

g b b 6

g b g 0

g g b 6

g g g 12

A B f(A,B)

b b 6

b g 0

g b 0

g g 6

B C f(B,C)

b b 6

b g 0

g b 0

g g 6
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Elimination in a Cost Function

A B f(A,B)

b b 4

b g 6

b r 1

g b 2

g g 6

g r 3

r b 1

r g 1

r r 6

Elim(f,B) A g(A)

b

g

r

1

1
2

Elim(g,A)
h

1

min
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Conditioning in a Cost Function

Assign A=b B g(B)

b

g

r

4

1
6

Assign B=r
h

4

A B f(A,B)

b b 4

b g 6

b r 1

g b 2

g g 6

g r 3

r b 1

r g 1

r r 6
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Conditioning vs. Elimination

A

G

B

C

E

D

F

Conditioning (search) Elimination (inference)

A=1 A=k…

G

B

C

E

D

F

G

B

C

E

D

F

A

G

B

C

E

D

F

G

B

C

E

D

F

k “sparser” problems 1 “denser” problem
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Outline

● Introduction
● Inference

– Variable Elimination, Bucket Elimination

● Bounds and heuristics
● AND/OR Search
● Exploiting parallelism
● Software
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Computing the Optimal Cost Solution

Constraint graph

A

B C

ED

OPT = 

Combination

Variable Elimination
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Bucket Elimination

Elimination/Combination operators

bucket  B: 

bucket  C: 

bucket  D: 

bucket  E: 

bucket  A: 

B

C

D

E

A

Algorithm elim-opt [Dechter, 1996]
Non-serial Dynamic Programming [Bertele & Briochi, 1973]

OPT = 

OPT
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Generating the Optimal Assignment

C:

E:

B:

D:

A:

Return:
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Complexity of Bucket Elimination

Elimination / Combination operators

bucket  B: 

bucket  C: 

bucket  D: 

bucket  E: 

bucket  A: 

B

C

D

E

A

Algorithm elim-opt [Dechter, 1996]
Non-serial Dynamic Programming [Bertele & Briochi, 1973]

OPT = 

     exp(w*=4)
“induced width” 
(max clique size)

OPT
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Complexity of Bucket Elimination

The effect of the ordering:

constraint graph

A

D E

CB

r = number of functions

Bucket Elimination is time and space

Finding the smallest induced width is hard!

C

D

A

E

B E

D

C

B

A

: the induced width of the primal graph along ordering d
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Outline

● Introduction
● Inference
● Bounds and heuristics

– Basics of search: DFS versus BFS

– Mini-Bucket Elimination

– Weighted Mini-Buckets and Iterative Cost-Shifting

– Generating Heuristics using Mini-Bucket Elimination

● AND/OR Search
● Exploiting parallelism
● Software
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– Mini-Bucket Elimination

– Weighted Mini-Buckets and Iterative Cost-Shifting

– Generating Heuristics using Mini-Bucket Elimination

● AND/OR Search
● Exploiting parallelism
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OR Search Spaces
A

E

C

B

F

D

A B f1

0 0 2
0 1 0
1 0 1
1 1 4

A C f2

0 0 3
0 1 0
1 0 0
1 1 1

A E f3

0 0 0
0 1 3
1 0 2
1 1 0

A F f4

0 0 2
0 1 0
1 0 0
1 1 2

B C f5

0 0 0
0 1 1
1 0 2
1 1 4

B D f6

0 0 4
0 1 2
1 0 1
1 1 0

B E f7

0 0 3
0 1 2
1 0 1
1 1 0

C D f8

0 0 1
0 1 4
1 0 0
1 1 0

E F f9

0 0 1
0 1 0
1 0 0
1 1 2

0 1 0 1 0 1 0 1

0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

0 1 0 1

C

D

F

E

B

A 0 1

Objective function:
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OR Search Spaces
A

E

C

B

F

D

A B f1

0 0 2
0 1 0
1 0 1
1 1 4

A C f2

0 0 3
0 1 0
1 0 0
1 1 1

A E f3

0 0 0
0 1 3
1 0 2
1 1 0

A F f4

0 0 2
0 1 0
1 0 0
1 1 2

B C f5

0 0 0
0 1 1
1 0 2
1 1 4

B D f6

0 0 4
0 1 2
1 0 1
1 1 0

B E f7

0 0 3
0 1 2
1 0 1
1 1 0

C D f8

0 0 1
0 1 4
1 0 0
1 1 0

E F f9

0 0 1
0 1 0
1 0 0
1 1 2

Arc-cost is calculated based on cost functions with empty scope (conditioning)

0 1 0 1 0 1 0 1

0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

0 1 0 1

C

D

F

E

B

A 0 1

3 02 23 02 23 02 23 02 2 3 02 23 02 23 02 23 02 2

0 0

3 5 3 5 3 5 3 5 1 3 1 3 1 3 1 3

5 6 4 2 2 4 1 0

3 1

2

5 4

0

1 20 41 20 41 20 41 20 4 1 20 41 20 41 20 41 20 4

5 2 5 2 5 2 5 2 3 0 3 0 3 0 3 0

5 6 4 2 2 4 1 0

0 2 2 5

0 4

Objective function:
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The Value Function
A

E

C

B

F

D

A B f1

0 0 2
0 1 0
1 0 1
1 1 4

A C f2

0 0 3
0 1 0
1 0 0
1 1 1

A E f3

0 0 0
0 1 3
1 0 2
1 1 0

A F f4

0 0 2
0 1 0
1 0 0
1 1 2

B C f5

0 0 0
0 1 1
1 0 2
1 1 4

B D f6

0 0 4
0 1 2
1 0 1
1 1 0

B E f7

0 0 3
0 1 2
1 0 1
1 1 0

C D f8

0 0 1
0 1 4
1 0 0
1 1 0

E F f9

0 0 1
0 1 0
1 0 0
1 1 2

Value of node = minimal cost solution below it

0 1 0 1 0 1 0 1

0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

0 1 0 1

C

D

F

E

B

A 0 1

3 0
0

2 2

6

2

3

3 02 23 02 23 02 2 3 02 23 02 23 02 23 02 2
0 0 02 2 2 0 2 0 0 02 2 2

3 3 3 1 1 1 1

8 5 3 1

5

5

1 0 1 1 10 0 0 1 0 1 1 10 0 0

2 2 2 2 0 0 0 0

7 4 2 0

7 4

7

5
0 0

3 5 3 5 3 5 3 5 1 3 1 3 1 3 1 3

5 6 4 2 2 4 1 0

3 1

2

5 4

0

1 20 41 20 41 20 41 20 4 1 20 41 20 41 20 41 20 4

5 2 5 2 5 2 5 2 3 0 3 0 3 0 3 0

5 6 4 2 2 4 1 0

0 2 2 5

0 4

Objective function:



IJCAI 2015

The Optimal Solution
A

E

C

B

F

D

A B f1

0 0 2
0 1 0
1 0 1
1 1 4

A C f2

0 0 3
0 1 0
1 0 0
1 1 1

A E f3

0 0 0
0 1 3
1 0 2
1 1 0

A F f4

0 0 2
0 1 0
1 0 0
1 1 2

B C f5

0 0 0
0 1 1
1 0 2
1 1 4

B D f6

0 0 4
0 1 2
1 0 1
1 1 0

B E f7

0 0 3
0 1 2
1 0 1
1 1 0

C D f8

0 0 1
0 1 4
1 0 0
1 1 0

E F f9

0 0 1
0 1 0
1 0 0
1 1 2

Value of node = minimal cost solution below it

0 1 0 1 0 1 0 1

0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

0 1 0 1

C

D

F

E

B

A 0 1

3 0
0

2 2

6

2

3

3 02 23 02 23 02 2 3 02 23 02 23 02 23 02 2
0 0 02 2 2 0 2 0 0 02 2 2

3 3 3 1 1 1 1

8 5 3 1

5

5

1 0 1 1 10 0 0 1 0 1 1 10 0 0

2 2 2 2 0 0 0 0

7 4 2 0

7 4

7

5
0 0

3 5 3 5 3 5 3 5 1 3 1 3 1 3 1 3

5 6 4 2 2 4 1 0

3 1

2

5 4

0

1 20 41 20 41 20 41 20 4 1 20 41 20 41 20 41 20 4

5 2 5 2 5 2 5 2 3 0 3 0 3 0 3 0

5 6 4 2 2 4 1 0

0 2 2 5

0 4

Objective function:
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Basic Heuristic Search Schemes

Heuristic function           computes a lower bound on the best extension of 
partial configuration      and can be used to guide heuristic search. 
We focus on: 

1. Branch-and-Bound
Use heuristic function           to 
prune the depth-first search tree
Linear space

2. Best-First Search
Always expand the node with 
the lowest heuristic value
Needs lots of memory
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Classic Depth-First Branch and Bound

n

g(n) : cost of the path from root to n

  : under-estimates optimal cost below n

Prune if 

(UB) Upper Bound = best solution so far

Each node is a COP subproblem
(defined by current conditioning)

(lower bound)
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Best-First vs. Depth-First Branch and Bound

● Best-First (A*):
– Expands least number 

of nodes given h

– Requires storing full 
search tree in memory

● Depth-First BnB:
– Can use linear space

– If finds an optimal 
solution early, will 
expand the same 
search space as Best-
First (if search space 
is a tree)

– BnB can improve the 
heuristic function 
dynamically
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How to Generate Heuristics

● The principle of relaxed models
– Mini-Bucket Elimination

– Bounded directional consistency ideas

– Linear relaxations for integer programs
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Outline

● Introduction
● Inference
● Bounds and heuristics

– Basics of search: DFS versus BFS

– Mini-Bucket Elimination

– Weighted Mini-Buckets and Iterative Cost-Shifting

– Generating Heuristics using Mini-Bucket Elimination

● AND/OR Search
● Exploiting parallelism
● Software



IJCAI 2015

Mini-Bucket Approximation
Split a bucket into mini-buckets => bound complexity

bucket (X) =

Exponential complexity decrease:



IJCAI 2015

Mini-Bucket Elimination

[Dechter and Rish, 2003]

A

B C

D E

mini-buckets

bucket A:

bucket E:

bucket D:

bucket C:

bucket B:

L = lower bound 
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Mini-Bucket Elimination Semantics

A

B C

D E

B’

A

B C

D E

mini-buckets

bucket A:

bucket E:

bucket D:

bucket C:

bucket B:

L = lower bound 



IJCAI 2015

Semantics of Mini-Buckets: Splitting a Node

Variables in different buckets are renamed and duplicated 
[Kask et al., 2001], [Geffner et al., 2007], [Choi et al., 2007], [Johnson et al. 2007]

Before Splitting:
Network N

U

After Splitting:
Network N'

U
Û
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MBE-MPE(i): Algorithm Approx-MPE

● Input: i – max number of variables allowed in a mini-bucket

● Output: [lower bound (P of a suboptimal solution), upper bound]

      Example: approx-mpe(3)        versus           elim-mpe 

[Dechter and Rish, 1997]

 A:

 E:

 D:

 C:

 B:

L = lower bound 

 A:

 E:

 D:

 C:

 B:

OPT

Max variables 
in
  a mini-bucket

3

3

3

2

1
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Mini-Bucket Decoding

[Dechter and Rish, 2003]

Greedy configuration = upper bound

mini-buckets

bucket A:

bucket E:

bucket D:

bucket C:

bucket B:

L = lower bound 
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Properties of MBE(i)

● Complexity: O(r exp(i)) time and O(exp(i)) space

● Yields a lower-bound and an upper-bound

● Accuracy: determined by upper/lower (U/L) bound

● Possible use of mini-bucket approximations:

– As anytime algorithms

– As heuristics in search

● Other tasks (similar mini-bucket approximations):

– Belief updating, Marginal MAP, MEU, WCSP, MaxCSP
[Dechter and Rish, 1997], [Liu and Ihler, 2011], [Liu and Ihler, 2013]
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Outline

● Introduction
● Inference
● Bounds and heuristics

– Basics of search: DFS versus BFS

– Mini-Bucket Elimination

– Weighted Mini-Buckets and Iterative Cost-Shifting

– Generating Heuristics using Mini-Bucket Elimination

● AND/OR Search
● Exploiting parallelism
● Software
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Cost-Shifting

+

= 0 + 6

A B C f(A,B,C)

b b b 12

b b g 6

b g b 0

b g g 6

g b b 6

g b g 0

g g b 6

g g g 12

A B f(A,B)

b b 6 + 3

b g 0 - 1

g b 0 + 3

g g 6 - 1

B C f(B,C)

b b 6 - 3

b g 0 - 3

g b 0 + 1

g g 6 + 1

(Reparameterization)

B

b 3

g -1

B

B B

Modify the individual functions

- but -

keep the sum of functions unchanged
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Dual Decomposition

● Bound solution using decomposed optimization
● Solve independently: optimistic bound



IJCAI 2015

Dual Decomposition

● Bound solution using decomposed optimization
● Solve independently: optimistic bound

● Tighten the bound by reparameterization
– Enforce lost equality constraints via Lagrange multipliers

Reparameterization:
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Dual Decomposition

Many names for the same class of bounds:
– Dual decomposition   [Komodakis et al. 2007]

– TRW, MPLP    [Wainwright et al. 2005, Globerson & Jaakkola 2007]

– Soft arc consistency [Cooper & Schiex 2004]

– Max-sum diffusion [Warner 2007]

Reparameterization:
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Dual Decomposition

Many ways to optimize the bound:
– Sub-gradient descent [Komodakis et al. 2007; Jojic et al. 2010]

– Coordinate descent [Warner 2007; Globerson & Jaakkola 2007; Sontag et al. 2009; Ihler et al. 2012]

– Proximal optimization [Ravikumar et al. 2010]

– ADMM    [Meshi & Globerson 2011; Martins et al. 2011; Forouzan & Ihler 2013]

Reparameterization:
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Mini-Bucket as Dual Decomposition
mini-buckets

bucket A:

bucket E:

bucket D:

bucket C:

bucket B:

L = lower bound 
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bucket A:

bucket E:

bucket D:

bucket C:

bucket B:

L = lower bound 
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bucket B:
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Mini-Bucket as Dual Decomposition
mini-buckets

bucket A:

bucket E:

bucket D:

bucket C:

bucket B:

L = lower bound 
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Mini-Bucket as Dual Decomposition

bucket A:

bucket E:

bucket D:

bucket C:

bucket B:

L = lower bound 

Join graph:

● Downward pass as cost-shifting

● Can also do cost-shifting within 
mini-buckets

● “Join graph” message passing

● “Moment matching” version:     
one message update within each 
bucket during downward sweep. 
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Anytime Approximation

UL

L

U

         

mpe(i)-approxL 

mpe(i)-approxU

iii

ii

step

smallest   theand largest  the

solutionreturn    ,11  

far so foundsolution best   thekeep

by  computed boundlower         

by  computed boundupper          

         

available are resources space and time
0

  return

end

 if         

 While

  :Initialize

)mpe(-anytime














[Dechter and Rish, 2003]
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Anytime Approximation

● Can tighten the bound in various ways
– Cost-shifting (improve consistency between cliques)
– Increase i-bound (higher order consistency)

● Simple moment-matching step improves bound significantly
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Anytime Approximation

● Can tighten the bound in various ways
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– Increase i-bound (higher order consistency)
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Weighted Mini-Bucket

Exact bucket elimination:

where

is the weighted or “power” sum operator

By Holder's inequality,

where                            and  

(lower bound if                              ) 

[Liu & Ihler 2011]

(mini-buckets)

   ( for summation bounds )   
mini-buckets

bucket A:

bucket E:

bucket D:

bucket C:

bucket B:

U = upper bound 
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Weighted Mini-Bucket

● Related to conditional entropy decomposition
[Globerson & Jaakkola 2008]

but, with an efficient, “primal” bound form

● We can optimize the bound over:
● Cost-shifting
● Weights

● Again, involves message passing on JG

● Similar, one-pass “moment matching” variant

[Liu & Ihler 2011]

bucket A:

bucket E:

bucket D:

bucket C:

bucket B:

U = upper bound 

Join graph:
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WMB for Marginal MAP

(w = “temperature”)

Weighted mini-bucket is applicable more generally, since

So, when w=0+, WMB reduces to max-inference.

For marginal MAP problems, just use different w's:
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WMB for Marginal MAP

[Liu & Ihler 2011, 2013]

Marginal MAP:

...

Can optimize over cost-shifting and weights

(single-pass “MM” or with iterative message passing)

mini-buckets

bucket A:

bucket E:

bucket D:

bucket C:

bucket B:

U = upper bound 
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Outline

● Introduction
● Inference
● Bounds and heuristics

– Basics of search: DFS versus BFS

– Mini-Bucket Elimination

– Weighted Mini-Buckets and Iterative Cost-Shifting

– Generating Heuristics using Mini-Bucket Elimination

● AND/OR Search
● Exploiting parallelism
● Software



IJCAI 2015

Generating Heuristics for Graphical Models

Given a cost function:

define an evaluation function over a partial assignment as the cost of its 
best extension:

[Kask and Dechter, 2001]

h(n)0 1 0 1

0 1 0 1 0 1 0 1

0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

0 1

E

D

B

C

A
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h(n)

Static Mini-Bucket Heuristics

bucket A:

bucket E:

bucket D:

bucket C:

bucket B:

0 1 0 1

0 1 0 1 0 1 0 1

0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

0 1

E

D

B

C

A

cost to go: 

cost so far:

Given a partial assignment,
  (weighted) mini-bucket gives an admissible heuristic:

mini-buckets

L = lower bound 

(admissible:                                          )
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Properties of the Heuristic

● MB heuristic is monotone, admissible 
● Computed in linear time
● IMPORTANT

– Heuristic strength can vary by MB(i)

– Higher i-bound → more pre-processing → more 
accurate heuristic → less search

● Allows controlled trade-off between pre-
processing and search
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Dynamic Mini-Bucket Heuristics

● Rather than pre-compile, compute the heuristics, 
dynamically, during search

● Dynamic MB: use the Mini-Bucket algorithm to 
produce a bound for any node during search

● Dynamic MBTE: compute heuristics 
simultaneously for all un-instantiated variables 
using Mini-Bucket-Tree Elimination (MBTE)

● MBTE is an approximation scheme defined over 
cluster trees. It outputs multiple bounds for each 
variable and value extension at once

[Marinescu, Kask and Dechter, 2003]
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Outline

● Introduction
● Inference
● Bounds and heuristics
● AND/OR Search
● Exploiting parallelism
● Software
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Outline

● Introduction
● Inference
● Bounds and heuristics
● AND/OR Search

– AND/OR Search Spaces

– AND/OR Branch and Bound

– Best-First AND/OR Search

– Advanced Searches and Tasks

● Exploiting parallelism
● Software
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Solution Techniques

Search: Conditioning

Complete

Incomplete

Simulated Annealing

Gradient Descent

Complete

Incomplete

Adaptive Consistency
Tree Clustering

Variable Elimination
Resolution

Local Consistency

Unit Resolution

Mini-bucket(i)

Stochastic Local Search
DFS search

Branch-and-Bound

A*

Inference: Elimination

Time: exp(treewidth)
Space:exp(treewidth)

Time: exp(n)
Space: linear

AND/OR search
Time: exp(treewidth*log n)

Space: linear

Hybrids

Space: exp(treewidth)
Time: exp(treewidth)

Time: exp(pathwidth)
Space: exp(pathwidth)
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Classic OR Search Space
A

E

C

B

F

D

A B f1

0 0 2
0 1 0
1 0 1
1 1 4

A C f2

0 0 3
0 1 0
1 0 0
1 1 1

A E f3

0 0 0
0 1 3
1 0 2
1 1 0

A F f4

0 0 2
0 1 0
1 0 0
1 1 2

B C f5

0 0 0
0 1 1
1 0 2
1 1 4

B D f6

0 0 4
0 1 2
1 0 1
1 1 0

B E f7

0 0 3
0 1 2
1 0 1
1 1 0

C D f8

0 0 1
0 1 4
1 0 0
1 1 0

E F f9

0 0 1
0 1 0
1 0 0
1 1 2

0 1 0 1 0 1 0 1

0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

0 1 0 1

C

D

F

E

B

A 0 1

Objective function:
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The AND/OR Search Tree
A

E

C

B

F

D

OR

AND

OR

AND

OR

OR

AND

AND

A

0

B

0

E

F F

0 1 0 1

0 1

C

D D

0 1 0 1

0 1

1

E

F F

0 1 0 1

0 1

C

D D

0 1 0 1

0 1

1

B

0

E

F F

0 1 0 1

0 1

C

D D

0 1 0 1

0 1

1

E

F F

0 1 0 1

0 1

C

D D

0 1 0 1

0 1

A

D

B

EC

F

Pseudo tree
[Freuder and Quinn, 1985]

[Dechter and Mateescu, 2007]
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The AND/OR Search Tree
A

E

C

B

F

D

OR

AND

OR

AND

OR

OR

AND

AND

A

0

B

0

E

F F

0 1 0 1

0 1

C

D D

0 1 0 1

0 1

1

E

F F

0 1 0 1

0 1

C

D D

0 1 0 1

0 1

1

B

0

E

F F

0 1 0 1

0 1

C

D D

0 1 0 1

0 1

1

E

F F

0 1 0 1

0 1

C

D D

0 1 0 1

0 1

A

D

B

EC

F

Pseudo tree

A solution subtree is (A=0, B=1, C=0, D=0, E=1, F=1)
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Weighted AND/OR Search Tree

A

E

C

B

F

D

A

D

B

EC

F

A B f1

0 0 2
0 1 0
1 0 1
1 1 4

A C f2

0 0 3
0 1 0
1 0 0
1 1 1

A E f3

0 0 0
0 1 3
1 0 2
1 1 0

A F f4

0 0 2
0 1 0
1 0 0
1 1 2

B C f5

0 0 0
0 1 1
1 0 2
1 1 4

B D f6

0 0 4
0 1 2
1 0 1
1 1 0

B E f7

0 0 3
0 1 2
1 0 1
1 1 0

C D f8

0 0 1
0 1 4
1 0 0
1 1 0

E F f9

0 0 1
0 1 0
1 0 0
1 1 2

A

0

B

0

E

F F

0 1 0 1

OR

AND

OR

AND

OR

OR

AND

AND 0 1

C

D D

0 1 0 1

0 1

1

E

F F

0 1 0 1

0 1

C

D D

0 1 0 1

0 1

5 6 4 2 3 0 2 2

5 2 0 2

5 2 0 2

3 3

6

5

5

5

3 1 3 5

2

2 4 1 0 3 0 2 2

2 0 0 2

2 0 0 2

4 1

5

5 4 1 3

0

1

w(A,0) = 0 w(A,1) = 0

Node Value
(bottom-up evaluation)

OR – minimization
AND – summation

Objective function:



IJCAI 2015

AND/OR versus OR Spaces
OR

AND

OR

AND

OR

OR

AND

AND

A

0

B

0

E

F F

0 1 0 1

0 1

C

D D

0 1 0 1

0 1

1

E

F F

0 1 0 1

0 1

C

D D

0 1 0 1

0 1

1

B

0

E

F F

0 1 0 1

0 1

C

D D

0 1 0 1

0 1

1

E

F F

0 1 0 1

0 1

C

D D

0 1 0 1

0 1

54 nodes

0 1 0 1 0 1 0 1

0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

0 1 0 1

C

D

F

E

B

A 0 1

126 nodes

A

E

C

B

F

D

A

D

B

EC

F
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AND/OR versus OR Spaces
width depth OR space AND/OR space

Time (sec) Nodes Time (sec) AND nodes OR nodes

5 10 3.15 2,097,150 0.03 10,494 5,247

4 9 3.13 2,097,150 0.01 5,102 2,551

5 10 3.12 2,097,150 0.03 8,926 4,463

4 10 3.12 2,097,150 0.02 7,806 3,903

5 13 3.11 2,097,150 0.10 36,510 18,255

Random graphs with 20 nodes, 20 edges and 2 values per node
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Complexity of AND/OR Tree Search

AND/OR tree OR tree

Space

Time

[Freuder & Quinn85], [Collin, Dechter & Katz91], 
[Bayardo & Miranker95], [Darwiche01]

d = domain size
t = depth of pseudo tree

n = number of variables
w* = induced width
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Constructing Pseudo Trees

● AND/OR serch algorithms are influenced by the 
quality of the pseudo tree

● Finding minimal induced width / depth pseudo 
tree is NP-hard

● Heuristics
– Min-Fill (min induced width)

– Hypergraph partitioning (min depth)
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Constructing Pseudo Trees

● Min-Fill
– Depth-first traversal of the induced graph obtained 

along the min-fill elimination order heuristic

– Variables ordered according to smallest “fill-set”

● Hypergraph Partitioning
– Functions are vertices in the hypergraph and 

variables are hyperedges

– Recursive decomposition of the hypergraph while 
minimizing the separator size at each step

– Using state-of-the-art software package hMeTiS

[Kjaerulff, 1990]

[Karypis and Kumar, 2000]



IJCAI 2015

Quality of the Pseudo Trees

Network hypergraph min-fill

 w* depth w* depth

barley 7 13 7 23

diabetes 7 16 4 77

link 21 40 15 53

mildew 5 9 4 13

munin1 12 17 12 29

munin2 9 16 9 32

munin3 9 15 9 30

munin4 9 18 9 30

water 11 16 10 15

pigs 11 20 11 26

Network hypergraph min-fill

 w* depth w* depth

spot5 47 152 39 204

spot28 108 138 79 199

spot29 16 23 14 42

spot42 36 48 33 87

spot54 12 16 11 33

spot404 19 26 19 42

spot408 47 52 35 97

spot503 11 20 9 39

spot505 29 42 23 74

spot507 70 122 59 160

Bayesian Networks Repository SPOT5 Benchmark
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From Search Trees to Search Graphs

● Any two nodes that root identical subtrees or 
subgraphs can be merged
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From Search Trees to Search Graphs

● Any two nodes that root identical subtrees or 
subgraphs can be merged
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Merging Based on Contexts

● One way of recognizing nodes that can be 
merged (based on the graph structure)
– context(X) = ancestors of X in the pseudo tree that 

are connected to X or to descendants of X

[ ]

[A]

[AB]

[AE][BC]

[AB]

A

D

B

EC

F

pseudo tree

A

E

C

B

F

D

A

E

C

B

F

D
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AND/OR Search Graph

A

E

C

B

F

D

A

D

B

EC

F

A B fab

0 0 2
0 1 0
1 0 1
1 1 4

A C fac

0 0 3
0 1 0
1 0 0
1 1 1

A E fae

0 0 0
0 1 3
1 0 2
1 1 0

A F faf

0 0 2
0 1 0
1 0 0
1 1 2

B C fbc

0 0 0
0 1 1
1 0 2
1 1 4

B D fbd

0 0 4
0 1 2
1 0 1
1 1 0

B E fbe

0 0 3
0 1 2
1 0 1
1 1 0

C D fcd

0 0 1
0 1 4
1 0 0
1 1 0

E F fef

0 0 1
0 1 0
1 0 0
1 1 2

AOR

0AND

BOR

0AND

OR E

OR

AND

AND 0 1

C

D D

0 1 0 1

0 1

1

E

F F

0 1 0 1

0 1

C

D D

0 1 0 1

0 1

1

B

0

E

F F

0 1 0 1

0 1

C

0 1

1

E

0 1

C

0 1

B C Value
0 0
0 1
1 0
1 1 Context minimal AND/OR search graph

Cache table for D

Objective function:
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How Big Is The Context?

● Theorem: The maximum context size for a 
pseudo tree is equal to the treewidth of the 
graph along the pseudo tree.

C

HK

D

M

F

G

A

B

E

J

O

L

N

P

[AB]

[AF]
[CHAE]

[CEJ]

[CD]

[CHAB]

[CHA]

[CH]

[C]

[ ]

[CKO]

[CKLN]

[CKL]

[CK]

[C]

(C K H A B E J L N O D P M F G)

B A

C

E

F G

H

J

D

K M

L

N

O
P

max context size =  treewidth
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Complexity of AND/OR Graph Search

AND/OR graph OR graph

Space

Time

d = domain size
w* = induced width

n = number of variables
pw* = pathwidth

w* ≤ pw* ≤ w* log n
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All Four Search Spaces

Full OR search tree 

126 nodes

0 1 0 1 0 1 0 1

0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

0 1 0 1 0 1 0 10 1 0 1 0 1 0 1 0 1 0 1 0 1 0 10 1 0 1 0 1 0 1 0 1 0 1 0 1 0 10 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

0 1 0 1

C

D

F

E

B

A 0 1

Full AND/OR search tree

54 AND nodes

AOR

0AND

BOR

0AND

OR E

OR F F

AND 0 1 0 1

AND 0 1

C

D D

0 1 0 1

0 1

1

E

F F

0 1 0 1

0 1

C

D D

0 1 0 1

0 1
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0

E

F F

0 1 0 1

0 1

C

D D

0 1 0 1

0 1

1

E

F F

0 1 0 1

0 1

C

D D

0 1 0 1

0 1

Context minimal OR search graph

28 nodes

0 1 0 1 0 1 0 1

0 1 0 1 0 1 0 1

0 1

0 1 0 1

0 1 0 1

C

D

F

E

B

A 0 1

Context minimal AND/OR search graph

18 AND nodes

AOR
0AND
BOR

0AND

OR E

OR F F

AND
0 1

AND 0 1

C

D D

0 1

0 1

1
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D D

0 1
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E

F F

0 1
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1
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Outline

● Introduction
● Inference
● Bounds and heuristics
● AND/OR Search

– AND/OR Search Spaces

– AND/OR Branch and Bound

– Best-First AND/OR Search

– Advanced Searches and Tasks

● Exploiting parallelism
● Software
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Classic Depth-First Branch and Bound

n

g(n) : cost of the path from root to n

  : under-estimates optimal cost below n

Prune if 

(UB) Upper Bound = best solution so far

Each node is a COP subproblem
(defined by current conditioning)

(lower bound)
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Partial Solution Tree

0

D

0

0

A

B C

0

0

A

B C

00

D

1

(A=0, B=0, C=0, D=1)

0

A

B C

01

D

0
(A=0, B=1, C=0, D=0)

0

A

B C

01

D

1

(A=0, B=1, C=0, D=1)

A

B C

D

Pseudo tree

(A=0, B=0, C=0, D=0)

Extension(T’) – solution trees that extend T’
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Exact Evaluation Function

OR

AND
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AND

OR

OR

AND
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f*(T’) = w(A,0) + w(B,1) + w(C,0) + w(D,0) + v(D,0) + v(F)
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1 1 1 4

A B C f1(ABC)
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0 1 0 3
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1 0 0 9
1 0 1 3
1 1 0 7
1 1 1 2



IJCAI 2015

Exact Evaluation Function
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f(T’) = w(A,0) + w(B,1) + w(C,0) + w(D,0) + h(D,0) + h(F) = 12 ≤ f*(T')
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AND/OR Branch and Bound Search
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∞ 2 0 2

0

B
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11

0 0

f(T’) ≥ UB

UB (best solution found so far)
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AND/OR Branch and Bound (AOBB)

● Associate each node n with a heuristic lower 
bound h(n) on v(n)

● EXPAND (top-down)
– Evaluate f(T') and prune search if f(T') ≥ UB

– Generate successors of the tip node n

● UPDATE (bottom-up)
– Update value of the parent p of n

● OR nodes: minimization
● AND nodes: summation

[Marinescu and Dechter, 2005; 2009]
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AND/OR Branch and Bound with Caching

● Associate each node n with a heuristic lower bound 
h(n) on v(n)

● EXPAND (top-down)
– Evaluate f(T') and prune search if f(T') ≥ UB

– If not in cache, generate successors of the tip node n

● UPDATE (bottom-up)
– Update value of the parent p of n

● OR nodes: minimization
● AND nodes: summation

– Cache value of n based on context

[Marinescu and Dechter, 2006; 2009]
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Breadth-Rotating AOBB
● AND/OR decomposition vs. depth-first search:

– Compromises anytime property of AOBB.
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● AND/OR decomposition vs. depth-first search:

– Compromises anytime property of AOBB.

● Breadth-Rotating AOBB:
– Combined breadth/depth-first schedule.

– Maintains depth-first complexity.

– Superior experimental results.
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Breadth-Rotating AOBB
● AND/OR decomposition vs. depth-first search:

– Compromises anytime property of AOBB.

● Breadth-Rotating AOBB:
– Combined breadth/depth-first schedule.

– Maintains depth-first complexity.

– Superior experimental results.

● Won PASCAL'11 Inference Challenge MPE 
track.
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Mini-Bucket Heuristics for AND/OR Search

● The depth-first and best-first AND/OR search 
algorithms use h(n) that can be computed:
– Static Mini-Bucket Heuristics

● Pre-compiled
● Reduced computational overhead
● Less accurate
● Static variable ordering

– Dynamic Mini-Bucket Heuristics
● Computed dynamically, during search
● Higher computational overhead
● High accuracy
● Dynamic variable ordering
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Bucket Elimination

A B

CD

E

F

G

A

B

C F

GD E

Ordering: (A, B, C, D, E, F, G)

A

f(A,B)B

f(B,C)C f(B,F)F

f(A,G) 
f(F,G)

Gf(B,E) 
f(C,E)

Ef(A,D) 
f(B,D) 
f(C,D)

D

hG (A,F)

hF (A,B)

hB (A)

hE (B,C)hD (A,B,C)

hC (A,B)

Exact evaluation of (A=a, B=b) below C:
h*(a, b, C) = hD(a, b, C) + hE(b, C)
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Static Mini-Bucket Heuristics

A B

CD

E

F

G

A

B

C F

GD E

Ordering: (A, B, C, D, E, F, G)

A

f(A,B)B

f(B,C)C f(B,F)F

f(A,G) 
f(F,G)

Gf(B,E) 
f(C,E)

Ef(B,D) 
f(C,D)

D

hG (A,F)

hF (A,B)

hB (A)

hE (B,C)hD (B,C)

hC (B)

hD (A)

f(A,D)D

mini-buckets

MBE(3)

h(a, b, C) = hD(a) + hD(b, C) + hE(b, C)
                 ≤ h*(a, b, C)
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Dynamic Mini-Bucket Heuristics

A B

CD

E

F

G

A

B

C F

GD E

Ordering: (A, B, C, D, E, F, G)

A

f(a,b)B

f(b,C)C f(b,F)F

f(a,G) 
f(F,G)

Gf(b,E) 
f(C,E)

Ef(a,D) 
f(b,D) 
f(C,D)

D

hG (F)

hF ()

hB ()

hE (C)hD (C)

hC ()

MBE(3)

h(a, b, C) = hD(C) + hE(C)
              = h*(a, b, C)
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Dynamic Variable Orderings

● Variable ordering heuristics
– Semantic-based

● Aim at shrinking the size of the search space based on 
context and current value assignments

– e.g., min-domain, min-dom/wdeg, min reduced cost

– Graph-based
● Aim at maximizing the problem decomposition

– e.g., pseudo tree arrangement
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Partial Variable Orderings (PVO)

A

E

C

B

F

D

Primal graph

A

D

B

EC

F

B

D

A

EC

F

Variable Groups/Chains: 
•  {A,B} 
•  {C,D} 
•  {E,F}

Instantiate {A,B} 
before {C,D} and {E,F}

*{A,B} is a separator/chain

Variables on chains 
in the pseudo tree 
can be instantiated 
dynamically, based
on some semantic 
ordering heuristic

* Similar idea is exploited by BTD (Backtracking with Tree Decomposition)
[Jegou and Terrioux, 2004]
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Full Dynamic Variable Ordering (DVO)
A

D

B C

E F

H

G

DA={0,1}   DB={0,1,2}
DE={0,1,2,3}
DC=DD=DF=DG=DH=DE

Domains

A B f(AB)

0 0 3
0 1 8
0 2 8
1 0 4
1 1 0
1 2 6

A E f(AE)

0 0 0
0 1 5
0 2 1
0 3 4
1 0 8
1 1 8
1 2 0
1 3 5

Cost functions

A

B

D

C

F

P1 P2

H

E

G

0

0

1

E

1

B

1

D

C

F

P1 P2

H G

* Similar idea exploited in #SAT  [Bayardo and Pehoushek, 2000]
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Dynamic Separator Ordering (DSO)

A

D

B I

E F

H

G

C

Separator

Primal graph

A

B

C

P1

H

E

G

P2

D

I

F

C
P

Separator variables are
instantiated dynamically

Constraint Propagation may create singleton
variables in P1 and P2 (changing the problem’s 

structure), which in turn may yield smaller separators

* Similar idea exploited in SAT  [Li and val Beek, 2004]
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Backtrack with Tree Decomposition

A

E

C

B

F

D

C1

C2

C3

C4
C2

C1 C3

C4

AB

AE

BC

tree decomposition (w=2)

A

D

B

EC

F

pseudo tree (w=2)

[ ]

[A]

[AB]

[AE][BC]

[AB]

BTD:
•  AND/OR graph search (caching on 

separators)
•  Partial variable ordering (dynamic 

inside clusters)
•  Maintaining local consistency

[Jegou and Terrioux, 2004]
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Backtrack with Tree Decomposition

● Before the search
– Merge clusters with a separator size > p

– Time O(k exp(w*)), Space O(exp(p))

– More freedom for variable ordering heuristics

● Properties
– BTD(-1) is Depth-First Branch and Bound

– BTD(0) solves connected components independently

– BTD(1) exploits bi-connected components

– BTD(s) is Backtrack with Tree Decomposition
(s: largest separator size)
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Outline

● Introduction
● Inference
● Bounds and heuristics
● AND/OR Search

– AND/OR Search Spaces

– AND/OR Branch and Bound

– Best-First AND/OR Search

– Advanced Searches and Tasks

● Exploiting parallelism
● Software
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Basic Heuristic Search Schemes

Heuristic function           computes a lower bound on the best extension of 
partial configuration      and can be used to guide heuristic search. 
We focus on: 

1. Branch-and-Bound
Use heuristic function           to 
prune the depth-first search tree
Linear space

2. Best-First Search
Always expand the node with 
the lowest heuristic value
Needs lots of memory
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Best-First Principle

● Best-first search expands first the node with the best 
heuristic evaluation function among all nodes 
encountered so far

● Never expands nodes whose cost is beyond the 
optimal one, unlike depth-first algorithms  [Dechter and Pearl, 
1985]

● Superior among memory intensive algorithms 
employing the same heuristic evaluation function
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Best-First AND/OR Search (AOBF)

● Maintains the explicated AND/OR search graph in memory
● Top-Down Step (EXPAND)

– Trace down marked connectors from root
● E.g., best partial solution tree

– Expand a tip node n by generating its successors n'

– Associate each successor with heuristic estimate h(n')
● Initialize q(n) = h(n') (q-value q(n) is a lower bound on v(n)

● Bottom-Up Step (UPDATE)
– Update node values q(n)

● OR nodes: minimization
● AND nodes: summation

– Mark the most promissing partial solution tree from the root

– Label the nodes as SOLVED:
● OR node is SOLVED if marked child is SOLVED
● AND node is SOLVED if all children are SOLVED

● Terminate when root node is SOLVED

[Marinescu and Dechter, 2006; 2009]
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AOBF versus AOBB

● AOBF with the same heuristic as AOBB is 
likely to expand the smallest search space
– This translates into significant time savings

● AOBB can use far less memory by avoiding for 
example dead-caches, whereas AOBF keeps 
in memory the explicated search graph

● AOBB is anytime, whereas AOBF is not
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Recursive Best-First AND/OR Search

● AND/OR search algorithms (AOBB and AOBF)
– AOBB (depth-first): memory efficient but may 

explore many suboptimal subspaces

– AOBF (best-first): explores the smallest search 
space but may require huge memory

● Recursive best-first search for AND/OR graphs
– Requires limited memory (even linear)

– Nodes are explored in best-first order

– Main issue: some nodes will be re-expanded (want to 
minimize this)
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Recursive Best-First AND/OR Search

● Transform best-first search (AO* like) into depth-first search 
using a threshold controlling mechanism (explained next)
– Based on Korf's classic RBFS

– Adapted to the context minimal AND/OR graph

● Nodes are still expanded in best-first order
● Node values are updated in the usual manner based on the 

values of their successors
– OR nodes by minimization

– AND nodes by summation

● Some nodes will be re-expanded
– Use caching (limited memory) based on contexts

– Use overestimation of the threshold to minimize node re-expansions

[Kishimoto and Marinescu, 2014]
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RBFAOO – Example (1)
A

0 1

1 1

h = 4h = 2
θ = 4

● Expand OR node A by generating its AND successors: (A,0) and (A,1)
● Best successor is (A,0)
● Set threshold θ(A,0) = 4 – indicates next best successor is (A,1)

● We can backtrack to (A,1) if the updated cost of the subtree below (A,0)
exceeds the threshold θ = 4
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RBFAOO – Example (2)
A

0 1

1 1

h = 4h = 2
θ = 4

B C h = 2h = 1

q = 3

● Expand AND node (A,0) by generating its OR successors: B and C
● Update node value q(A,0) = h(B) + h(C) = 3 – threshold OK
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RBFAOO – Example (3)
A

0 1

1 1

h = 4h = 2
θ = 4

B C h = 2h = 1

0 h = 3

1

q = 4

q = 6

● Expand OR node B by generating its AND successor: (B,0)
● Update node values q(B) = 4 and q(A,0) = 6 – threshold NOT OK

q(A,0) = 6 > θ(A,0) = 4
(backtrack)
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RBFAOO – Example (4)
A

0 1

1 1

h = 4h = 2

B C h = 2h = 1

0 h = 3

1

q = 4

q = 6
θ = 6

● Backtrack to (A,0) and select next best node (A,1)
● Set threshold θ(A,1) = 6 (updated value of the left subtree)
● Cache (minimize re-expansion) or discard left subtree
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RBFAOO – Overestimation 
A

0 1

1 1

h = 4h = 2
θ = 4

q ≥ θ

(q = 6)

A

0 1

1 1

h = 4h = 2
θ = 6

q ≥ θ

(q = 7)

A

0 1

1 1

h = 4h = 2
θ + δ = 6

q* = 6

● Some of the nodes in the subtree below (A,0) may be re-expanded
● Simple overestimation scheme for minimizing the node re-expansions
● Inflate the threshold with some small δ: θ' = θ + δ (δ > 0)

● In practice, we determine δ experimentally (e.g., δ = 1 worked best)
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Empirical Evaluation

Grid and Pedigree benchmarks; Time limit 1 hour.
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Outline
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● Bounds and heuristics
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– Best-First AND/OR Search
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Marginal MAP

● Occurs in many applications involving hidden variables
● Seeks a partial configuration of variables with maximum 

marginal probability
● Complexity: NPPP-complete
● State-of-the-art is DFS BnB (over the MAP variables)

– Guided by unconstrained join-tree based upper bounds

● Advances
– AND/OR Branch and Bound and Best-First AND/OR Search 

algorithms

– Heuristics based on Weighted Mini-Buckets
● WMB-MM: single pass with cost-shifting by moment matching
● WMB-JG: iterative updates by message passing along the join-graph
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Marginal MAP

● Occurs in many applications involving hidden variables
● Seeks a partial configuration of variables with maximum 

marginal probability
● Complexity: NPPP-complete
● State-of-the-art is DFS BnB (over the MAP variables)

– Guided by unconstrained join-tree based upper bounds

● Advances
– AND/OR Branch and Bound and Best-First AND/OR Search 

algorithms

– Heuristics based on Weighted Mini-Buckets
● WMB-MM: single pass with cost-shifting by moment matching
● WMB-JG: iterative updates by message passing along the join-graph
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AND/OR Search Space for MMAP 

A B

C

D

E

F G

H

A

B

C D

E FG

H

MAP variables

SUM variables

constrained pseudo tree

primal graph
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AND/OR Search Space for MMAP

A

10

B

10

DC

10 10

E

10

DC

10

E

10

10

B

10

DC

10 10

DC

10 10

E

10

E

10

E

10

E

10

E

10

E

10

G

10

F

10

H

10

H

10

G

10

F

10

G

10

F

10

G

10

F

10

H

10

H

10

● Node types
– OR (MAP): max
– OR (SUM): sum
– AND: multiplication

● Arc weights
– derived from input F

● Problem decomposition 
over MAP variables
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AND/OR Search Algorithms

● AOBB: Depth-First AND/OR Branch and Bound
– Depth-first traversal of the AND/OR search graph

– Prune only at OR nodes that correspond to MAP variables

– Cost of MAP assignment obtained by searching the SUM sub-problem

● AOBF: Best First AND/OR Search
– Best-first (AO*) traversal of the AND/OR space corresponding to the 

MAP variables

– SUM subproblem solved exactly

● RBFAOO: Recursive Best-First AND/OR Search
– Recursive best-first traversal of the AND/OR graph

– For SUM subproblems, the threshold is set to ∞ (equivalent to depth-
first search)

[Marinescu, Dechter and Ihler; 2014; 2015]
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Quality of the Upper Bounds

Average relative error wrt tightest upper bound. 10 iterations for WMB-JG(i).
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AOBB versus BB

Number of instances solved and median CPU time (sec). 10 iterations for WMB-JG(i).
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AOBF/RBFAOO versus AOBB

Number of instances solved and median CPU time (sec). Time limit 1 hour.
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Searching for M Best Solutions

● New inference and search based algorithms for the 
task of finding the m best solutions
– Search: m-A*, m-BB

– Inference: elim-m-opt, BE+m-BF

● Extended m-A* and m-BB to AND/OR search 
spaces for graphical models, yielding m-AOBB and 
m-AOBF

● Competitive and often superior to alternative 
(approximate) approaches based on LP relaxations
– e.g., [Fromer and Globerson, 2009], [Batra, 2012]

[Dechter, Flerova and Marinescu; 2012]
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Searching for M Best Solutions
B

et
te

r 
co

m
p

le
xi

ty

Exact algorithms!
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Empirical Evaluation

Grid instances; Time limit = 3h; Memory bound = 4 GB 
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Hybrid of Variable Elimination and Search

● Tradeoff space and time
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C

ED

BA
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ED
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…...A = 0
A = 1

A = k

…...C
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B
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Search Basic Step: Conditioning
Variable Branching by Conditioning

C

ED

B

…...A = 0
A = 1

A = k

…...C

ED

B

C

ED

B

C

ED

B

Select a variable General principle:

Condition until tractable

Solve each sub-problem
efficiently

A
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The Cycle-Cutset Scheme

Space: exp(i), Time: O(exp(i+c(i))

•  Cycle-cutset
•  i-cutset
•  C(i)-size of i-cutset

Condition until Treeness

E

D

F

C

A

B Cutset part

Tree part

E

D

F C

A

B

E

D

F

C

A

B

A A C

C
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Eliminate First
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Eliminate First

Solve the rest of the problem
by any means
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Hybrid Variants

● Condition, condition, condition, ... and then 
only eliminate (w-cutset, cycle-cutset)

● Eliminate, eliminate, eliminate, ... and then 
only search

● Interleave conditioning and elimination steps 
(elim-cond(i), VE+C)
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Interleaving Conditioning and Elimination

[Larrosa and Dechter, 2002]
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Interleaving Conditioning and Elimination
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Interleaving Conditioning and Elimination

...

...
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Boosting Search with Variable Elimination

● At each search node
– Eliminate all unassigned variables with degree ≤ p

– Select an assigned variable A

– Branch on the values of A

● Properties
– BB+VE(-1) is Depth-First Branch and Bound

– BB+VE(w) is Variable Elimination

– BB+VE(1) is similar to Cycle-Cutset

– BB+VE(2) is well suited with soft local consistencies (add 
binary constraints only, independent of elimination order)

[Larrosa and Dechter, 2003]
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Mendelian Error Detection

[Sanchez et al, 2008]

● Given a pedigree and partial 
observations (genotypings)

● Find the erroneous genotypings, such 
that their removal restores 
consistency

● Checking consistency is NP-complete [Aceto et al, 2004]
● Minimize the number of genotypings to be removed
● Maximize the joint probability of true genotypes (MPE/MAP)

Pedigree problem size: n ≤ 20,000; k = 3-66; e(3) ≤ 30,000

1
2/2 2
1
2/2

7
2/2

6
2/2

3
2/2

10
2/2

11
1/2

12
2/3

8

5 4

9
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Pedigree
•  toulbar2 v0.5 with EDAC and binary branching
•  Minimize the number of genotypings to be removed
•  CPU time to find and prove optimality on a 3 GHz computer with 16 GB

BB with dom/deg
BB with last conflict
BB+VE(2) with dom/deg
BB+VE(2) with last conflict
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Outline

● Introduction
● Inference
● Search
● Lower bounds and relaxations
● Exploiting parallelism

– Distributed and parallel search
● Software
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Contributions
● Propose parallel AOBB, first of its kind.

– Runs on computational grid.

– Extends parallel tree search paradigm.

– Two variants with different parallelization logic.

● Analysis of schemes' properties:

– Performance considerations and trade-offs.
● Granularity vs. overhead and redundancies.

● Large-scale experimental evaluation:

– Good parallel performance in many cases.

– Analysis of some potential performance pitfalls.
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Context and Related Work
● Task parallelism (vs. data parallelism):

– Extensive computation on small input.
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Context and Related Work
● Task parallelism (vs. data parallelism):

– Extensive computation on small input.

● Computational grid framework:

– Independent hosts, limited or no communication.

● Parallel tree search (“stack splitting”):

– Typically uses shared memory for dynamic load balancing 
and cost bound updates for BaB.

● Not feasible in grid setup.

● Motivation: Superlink Online.

– Distributed linkage (likelihood) computation.
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Parallel AOBB Illustrated
● Master process applies partial condi-

tioning to obtain parallel subproblems.
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Parallel AOBB Illustrated
● Master process applies partial condi-

tioning to obtain parallel subproblems.

Master search space

8 independent subproblem search spaces

P
artial  

C
onditioning  

Parallelization frontier

Loss of caching
across subproblems!
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Fixed-depth Parallel AOBB
● Algorithm receives cutoff depth d as input:

– Expand nodes centrally until depth d.

– At depth d, submit to grid job queue.
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Fixed-depth Parallel AOBB
● Algorithm receives cutoff depth d as input:

– Expand nodes centrally until depth d.

– At depth d, submit to grid job queue.

● Explored subproblem search spaces potentially 
very unbalanced.
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Variable-depth Parallel AOBB
● Given subproblem count p and estimator N :

– Iteratively deepen frontier until size p reached:
● Pick subproblem n with largest estimate N(n) and split.

– Submit subproblems into job queue by descending 
complexity estimates.
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Variable-depth Parallel AOBB
● Given subproblem count p and estimator N :

– Iteratively deepen frontier until size p reached:
● Pick subproblem n with largest estimate N(n) and split.

– Submit subproblems into job queue by descending 
complexity estimates.

● Hope to achieve better subproblem balance.
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N (n) = exp (∑i
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Aside: Modeling AOBB Complexity
● Model number of nodes N(n) in subproblem as 

exp. function of subproblem features φi(n) :

● Logarithm yields linear regression problem.
– Minimize MSE with Lasso regularization. [Tibshirani]

– Full details:
● “A Case Study in Complexity Estimation: Towards Parallel 

Branch-and-Bound over Graphical Models”, UAI 2012.

N (n) = exp(∑i
λ i ϕ i(n))

1
m∑ j=1

m
(∑i

λi ϕ i(nk )−log N (nk ))
2
+ α∑i∣λ i∣
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35 Subproblem Features
● Characterize subproblem:

– Static, structural properties:
● Number of variables.
● Avg. and max. width.
● Height of sub pseudo tree.
● State space bound SS .

– Dynamic, runtime properties:
● Upper and lower bound

on subproblem cost.
● Pruning ratio and depth

of small AOBB probe.
– only 5n nodes, very fast.
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Example Estimation Results
● Across subproblems from several domains.

– Hold out test data for model learning.
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Assessing Parallel Performance
● Sequential AOBB performance baseline:

– Tseq: sequential runtime.

– Nseq: number of sequential node expansions.

● Parallel AOBB performance metrics:

– Tpar: parallel runtime including central preprocessing.

– Spar: Parallel speedup Tseq / Tpar .

– Npar: Node expansions across all subproblems.

– Opar: Relative parallel overhead Npar / Nseq .

– Upar: Avg. processor utilization, relative to longest.
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Performance Considerations
● Amdahl's Law [1967]:

– “If a fraction p of a computation can be sped up by 
a factor or s, the overall speedup cannot exceed
1/(1–p+p/s).”

● Example: 20 minute computation, 30 sec preprocessing. 
Best speedup 40x (regardless of parallel CPUs).
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Performance Considerations
● Amdahl's Law [1967]:

– “If a fraction p of a computation can be sped up by a 
factor or s, the overall speedup cannot exceed
1/(1–p+p/s).”

● Example: 20 minute computation, 30 sec preprocessing. 
Best speedup 40x (regardless of parallel CPUs).

● Implication of overhead Opar :

– Proposition: assuming parallel overhead o and 
execution on p CPUs, speedup is bounded by p/o .

● Example: 500 CPUs, overhead 2 → best speedup 250.
● In practice even lower due to load balancing, 

communication delays, etc.
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Parallel AOBB Performance Factors
● Distributed System Overhead:

– Master preprocessing and parallelization decision.

– Repeated preprocessing in workers (mini-buckets).

– Communication and scheduling delays.

● Parallel search space redundancies:
– Impacted pruning, lack of bounds propagation.

● Local search for near-optimal initial bound.

– Loss of caching across parallel subproblems.
● Analyzed subsequently.

● Parallel AOBB is not “embarrassingly parallel”.
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Redundancy Analysis

d=1

Overall 78 AND nodes
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Redundancy Analysis

Overall 102 AND nodes

d=2



IJCAI 2015

Redundancy Analysis

d=3



IJCAI 2015

Redundancy Analysis

Overall 70 AND nodesd=3
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Redundancy Quantied
● Definitions:

– wd(X) is size of context of X below level d.

– πd(X) is ancestor of X at level d.

● Underlying parallel search space size SSpar :
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Redundancy Quantied
● Definitions:

– wd(X) is size of context of X below level d.

– πd(X) is ancestor of X at level d.

● Underlying parallel search space size SSpar :

– SSpar(0) = SSpar(h) = SSseq .

– SSpar(d) ≥ SSpar(0)  for all d .

Conditioning space Overall subproblem space
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Redundancy vs. Parallelism
● Assume parallelism with sufficient CPUs.

– Consider conditioning space + max. subproblem.

Example revisited:
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Redundancy vs. Parallelism
● Assume parallelism with sufficient CPUs.

– Consider conditioning space + max. subproblem.

● But: doesn't capture explored search space.
– Can pruning compensate for redundancies?

Example revisited:
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● Parallel experiments over 75 benchmarks.

– Instances from four classes, with varying i-bound.

– Tseq from under 1 hour to over 2 weeks.

– Run with 20, 100, and 500 parallel CPUs.
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Empirical Evaluation
● Parallel experiments over 75 benchmarks.

– Instances from four classes, with varying i-bound.

– Tseq from under 1 hour to over 2 weeks.

– Run with 20, 100, and 500 parallel CPUs.

● Experimental Methodology:
– Apply different fixed-depth cutoff depths d.

– Use subproblem count p as var-depth input.

● ~91 thousand CPU hours – over 10 years!
– Over 1400 parallel runs.

– Can only summarize some aspects here.
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● Record overall parallel runtime / speedup.

– Lots of data!
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Example Results
● Record overall parallel runtime / speedup.

– Lots of data!
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Example: LargeFam3-15-59, i=19
● Sequential runtime

Tseq = 43,307 sec.



IJCAI 2015

Example: LargeFam3-15-59, i=19
● Sequential runtime

Tseq = 43,307 sec.

(Variable-depth)

(Fixed-depth)



IJCAI 2015

Example: Pedigree7, i=6
● Sequential runtime

Tseq = 118,383 sec.



IJCAI 2015

Example: Pedigree7, i=6
● Sequential runtime

Tseq = 118,383 sec.

(Variable-depth)

(Fixed-depth)



IJCAI 2015

Example: Pedigree7, i=6
● Sequential runtime

Tseq = 118,383 sec.

(Variable-depth)

(Fixed-depth)



IJCAI 2015

Example: Pedigree7, i=6
● Sequential runtime

Tseq = 118,383 sec.



IJCAI 2015

Example: Pedigree7, i=6
● Sequential runtime

Tseq = 118,383 sec.

(Variable-depth)

(Fixed-depth)



IJCAI 2015

Example: Pedigree7, i=6
● Sequential runtime

Tseq = 118,383 sec.

(Variable-depth)

(Fixed-depth)
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Example: LargeFam3-16-56, i=15
● Sequential runtime

Tseq = 1,891,710 sec.
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Example: LargeFam3-16-56, i=15
● Sequential runtime

Tseq = 1,891,710 sec.

(Variable-depth)

(Fixed-depth)
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● Sequential runtime

Tseq = 545,249 sec.
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Example: Pdb1huw, i=3
● Sequential runtime

Tseq = 545,249 sec.

(Variable-depth)

(Fixed-depth)
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Example: 75-25-1, i=14
● Sequential runtime

Tseq = 15,402 sec.
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● Sequential runtime
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Example: 75-25-1, i=14
● Sequential runtime

Tseq = 15,402 sec.

(Variable-depth)

(Fixed-depth)
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Space

● Compute SSpar bound (ahead of time).

– Plot against Npar for different i-bounds.
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Space

● Compute SSpar bound (ahead of time).

– Plot against Npar for different i-bounds.
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● Assess parallel redundancies in practice.

– Node expansion overhead Opar = Npar / Nseq .
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Redundancies and Overhead Opar
● Assess parallel redundancies in practice.

– Node expansion overhead Opar = Npar / Nseq .
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– Trade off load balancing vs. overhead:
● #subproblems ≈ 10 × #CPUs
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Parallel Scaling Summary
● Plot speedup against CPU count.

– Trade off load balancing vs. overhead:
● #subproblems ≈ 10 × #CPUs
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Fixed-depth vs. Variable-depth
● Compare speedup of the two parallel schemes.

– Count cases that are 10% and 50% better.
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Outline

● Introduction
● Inference
● Bounds and heuristics
● AND/OR Search
● Exploiting parallelism
● Software

– UAI Probabilistic Inference Competition
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Software

● aolib 
– http://graphmod.ics.uci.edu/group/Software

(standalone AOBB, AOBF solvers)

● daoopt
– https://github.com/lotten/daoopt

(distributed and standalone AOBB solver)

http://graphmod.ics.uci.edu/group/Software
https://github.com/lotten/daoopt
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UAI Probabilistic Inference Competitions

● 2006

● 2008

● 2011

● 2014

MPE/MAP MMAP

(aolib)

(aolib)

(daoopt)

(daoopt) (daoopt) (merlin)
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Conclusion

● Only a few principles
– Inference and search should be combined

● Time-space tradeoff

– AND/OR search should be used

– Caching in search should be used

– Parallel search should be used if a distributed 
environment is available 


