Advances in Combinatorial Optimization for Graphical Models

Rina Dechter
University of California, Irvine

Radu Marinescu
IBM Research - Ireland

Alexander Ihler

University of California, Irvine

Lars Otten

University of California, Irvine (now Google Inc.)

Outline

- Introduction
- Graphical models
- Optimization tasks for graphical models
- Inference
- Variable Elimination, Bucket Elimination
- Bounds and heuristics
- Basics of search
- Bounded variable elimination and iterative cost shifting
- ANDIOR Search
- AND/OR search spaces
- Depth-First Branch and Bound, Best-First search
- Exploiting parallelism
- Distributed and parallel search
- Software

Combinatorial Optimization

Earth observing satellites

Find an optimal schedule for the satellite that maximizes the number of photographs taken, subject to on-board recording capacity

Investments

How much to invest in each asset to earn 8 cents per Invested dollar and the investment risk is minimized

Combinatorial Optimization

Communications

Assign frequencies to a set of radio links such that interferencies are minimized

Bioinformatics

Find a joint haplotype configuration for all members of the pedigree which maximizes the probability of data

Constrained Optimization

Power plant scheduling

Unit \# $\left.$\begin{tabular}{ccc}
Min Up

Time

Min Down

Time
\end{tabular} \right\rvert\,

Variables: $X_{1}, X_{2}, \ldots, X_{n} \quad$ Domains: ON, OFF
Constraints: $X_{1} \vee X_{2}, \quad \neg X_{3} \vee X_{4}$, min-uptime, min-downtime Power demand: Power $\left(X_{i}\right) \geq$ Demand

Objective: minimize TotalFuelConsumption $\left(X_{1}, \ldots, X_{n}\right)$

Constraint Optimization Problems

A finite COP is a triple $R=\langle X, D, F\rangle$ where:

$$
\begin{aligned}
X & =\left\{x_{1}, \ldots, x_{n}\right\} \quad \text {-- variables } \\
D & =\left\{D_{1}, \ldots, D_{n}\right\} \quad-\text { domains } \\
F & =\left\{f_{\alpha_{1}}, \ldots, f_{\alpha_{m}}\right\}-\text { - cost functions }
\end{aligned}
$$

$f(A, B, D)$ has scope $\{A, B, D\}$

\mathbf{A}	\mathbf{B}	\mathbf{D}	Cost
1	2	3	3
1	3	2	2
2	1	3	∞
2	3	1	0
3	1	2	5
3	2	1	0

Primal graph: $\left\{\begin{array}{l}\text { Variables - nodes } \\ \text { Functions - arcs / cliques }\end{array}\right.$

$$
F(a, b, c, d, f, g)=f_{1}(a, b, d)+f_{2}(d, f, g)+f_{3}(b, c, f)+f_{4}(a, c)
$$

Global Cost Function

$$
F(X)=\sum_{\alpha} f_{\alpha}\left(x_{\alpha}\right)
$$

Constraint Networks

Map coloring

Variables: countries (A, B, C, etc.)
Values: colors (red, green, blue)
Constraints: $A \neq B, \quad B \neq D, \quad A \neq D$, etc.

A	B
red	green
red	blue
green	red
green	blue
blue	red
blue	green

Constraint graph

IJCAI 2015

Probabilistic Networks

Monitoring Intensive-Care Patients

The "alarm" network - 37 variables, 509 parameters (instead of 2^{37})

IJCAI 2015

Genetic Linkage Analysis

- 6 individuals
- Haplotype: $\{2,3\}$
- Genotype: \{6\}
- Unknown

Pedigree: 6 people, 3 markers

IJCAI 2015

Influence Diagrams

Task: find optimal policy

$$
E=\max _{\Delta=\left(\delta_{1}, \ldots, \delta_{m}\right)} \sum_{x=\left(x_{1}, \ldots, x_{n}\right) i} \prod_{i} P_{i}(x) u(x)
$$

Chance variables: $X=x_{1}, \ldots, x_{n}$
Decision variables: $D=d_{1}, \ldots d_{m}$
CPDs for chance variables: $P_{i}=P\left(x_{i} \mid x_{\mathrm{pa}_{i}}\right), i=1, \ldots, n$
Reward components: $r=\left\{r_{1}, \ldots, r_{j}\right\}$
Utility function: $u(X)=\sum_{i} r_{i}(X)$

Graphical Models

- A graphical model (X, D, F):
- $X=\left\{x_{1}, \ldots, x_{n}\right\} \quad$ variables
- $D=\left\{D_{1}, \ldots, D_{n}\right\} \quad$ domains
- $F=\left\{f_{\alpha_{1}}, \ldots, f_{\alpha_{m}}\right\}$ functions
- (constraints, CPTs, CNFs, ...)
- Operators
- Combination
- Elimination (projection)
- Tasks
- Belief updating: $\sum_{X \backslash Y} \prod_{j} P_{j}$
- MPE/MAP: $\max _{X} \prod_{j} P_{j}$
- Marginal MAP: $\max _{Y} \sum_{X \backslash Y} \prod_{j} P_{j}$
- CSP: $\prod_{j} C_{j}(x)$
- WCSP: $\min _{X} \sum_{j} f_{j}$
- MEU: $\max _{\Delta} \sum_{x} P(x) u(x)$

- All these tasks are NP-hard
- Exploit problem structure
- Identify special cases
- Approximate

Example Domains for Graphical Models

- Web Pages and Link Analysis
- Communication Networks (Cell phone fraud detection
- Natual Language Processing (e.g., information extraction and semantic parsing)
- Battlespace Awarness
- Epidemiological Studies
- Citation Networks
- Intelligence Analysis (terrorist networks)
- Financial Transactions (money laundering)
- Computational Biology
- Object Recognition and Scene Analysis
- ...

Combinatorial Optimization Tasks

- Most Probable Explanation (MPE), or Maximum A Posteriori (MAP)
- M Best MPE/MAP
- Marginal MAP (MMAP)
- Weighted CSPs (WCSP), Max-CSPs, Max-SAT
- Integer Linear Programs
- Maximum Expected Utility (MEU)

Outline

- Introduction
- Graphical models
- Optimization tasks for graphical models
- Solving optimization problems by inference and search
- Inference
- Bounds and heuristics
- AND/OR Search
- Exploiting parallelism
- Software

Solution Techniques

AND/OR search

Search: Conditioning

Inference: Elimination

Combination of Cost Functions

A	\mathbf{B}	$\mathbf{f}(\mathbf{A}, \mathbf{B})$
b	b	6
b	g	0
g	b	0
g	g	6

\mathbf{B}	\mathbf{C}	$\mathbf{f (B , C)}$
b	b	6
b	g	0
g	b	0
g	g	6

Elimination in a Cost Function

$\left.\begin{array}{|c|c|c|}\hline \mathbf{A} & \mathbf{B} & \mathbf{f (A , B)} \\ \hline b & b & 4 \\ \hline b & g & 6 \\ \hline b & r & 1 \\ \hline g & b & 2 \\ \hline g & g & 6 \\ \hline g & r & 3 \\ \hline r & b & 1 \\ \hline r & g & 1 \\ \hline r & r & 6 \\ \hline\end{array}\right\}$ Elim(f,B)

Conditioning in a Cost Function

Conditioning vs. Elimination

Conditioning (search)

Elimination (inference)

1 "denser" problem

Outline

- Inference
- Variable Elimination, Bucket Elimination
- ANDIOR Search

Computing the Optimal Cost Solution

$$
\text { OPT }=\min _{a, e, d, c, b} f(a)+\underbrace{f(a, b)}_{\text {Combination }}+f(a, c)+f(a, d)+\underbrace{f(b, c)+f(b, d)+f(b, e})+f(c, e)
$$

$$
\min _{a} f(a) \min _{e, d} f(a, d)+\min _{c} f(a, c)+f(c, e)+\min _{b} \underbrace{f(a, b)+f(b, c)+f(b, d)+f(b, e)}_{\lambda_{B}(a, d, c, e)}
$$

Variable Elimination

Bucket Elimination

Algorithm elim-opt [Dechter, 1996]
Non-serial Dynamic Programming [Bertele \& Briochi, 1973]

$$
\mathrm{OPT}=\min _{a, e, d, c, b} f(a)+f(a, b)+f(a, c)+f(a, d)+f(b, c)+f(b, d)+f(b, e)+f(c, e)
$$

Generating the Optimal Assignment

$$
\begin{array}{rl}
\mathbf{b}^{*}=\arg \min _{\mathbf{b}} & f\left(a^{*}, b\right)+f\left(b, c^{*}\right) \\
& +f\left(b, d^{*}\right)+f\left(b, e^{*}\right) \\
\mathbf{c}^{*}=\arg \min _{\mathbf{c}} & f\left(c, a^{*}\right)+f\left(c, e^{*}\right) \\
& +\lambda_{B \rightarrow C}\left(a^{*}, d^{*}, c, e^{*}\right)
\end{array}
$$

$$
\mathbf{d}^{*}=\arg \min _{\mathbf{d}} f\left(a^{*}, d\right)+\lambda_{C \rightarrow D}\left(a^{*}, d, e^{*}\right)
$$

$$
\mathbf{e}^{*}=\arg \min _{\mathbf{e}} \lambda_{D \rightarrow E}\left(a^{*}, e\right)
$$

$\mathbf{a}^{*}=\arg \min _{\mathbf{a}} f(a)+\lambda_{E \rightarrow A}(a)$

C: $\quad f(c, a) f(c, e) \quad \lambda_{B \rightarrow C}(a, d, c, e)$

D: $\quad f(a, d) \quad \lambda_{C \rightarrow D}(a, d, e)$
E: $\quad \lambda_{D \rightarrow E}(a, e)$

A: $\quad f(a) \quad \lambda_{E \rightarrow A}(a)$

Return: ($\left.\mathbf{a}^{*}, \mathbf{b}^{*}, \mathbf{c}^{*}, \mathrm{~d}^{*}, \mathrm{e}^{*}\right)$

Complexity of Bucket Elimination

Algorithm elim-opt [Dechter, 1996] Non-serial Dynamic Programming [Bertele \& Briochi, 1973]
$\mathrm{OPT}=\min _{a, e, d, c, b} f(a)+f(a, b)+f(a, c)+f(a, d)+f(b, c)+f(b, d)+f(b, e)+f(c, e)$

Complexity of Bucket Elimination

Bucket Elimination is time and space

$$
O\left(r \exp \left(w^{*}(d)\right)\right)
$$

$w^{*}(d)$: the induced width of the primal graph along ordering d
$r=$ number of functions
The effect of the ordering:

constraint graph

$w^{*}\left(d_{1}\right)=4$

$w^{*}\left(d_{2}\right)=2$

Finding the smallest induced width is hard!

Outline

-
-
- Bounds and heuristics
- Basics of search: DFS versus BFS
- Mini-Bucket Elimination
- Weighted Mini-Buckets and Iterative Cost-Shifting
- Generating Heuristics using Mini-Bucket Elimination

Outline

-
-
- Bounds and heuristics
- Basics of search: DFS versus BFS
- Mini-Bucket Elimination
- Weighted Mini-Buckets and Iterative Cost-Shifting
- Generating Heuristics using Mini-Bucket Elimination

OR Search Spaces

A	B	f_{1}	A	C	f_{2}	A	E	f_{3}	A	F	f_{4}	B	C	f_{5}	B	D	f_{6}	B	E	f_{7}	C	D	f_{8}	E	F	f_{9}
$\mathbf{0}$	$\mathbf{0}$	$\mathbf{2}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{3}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{2}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{4}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{3}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$
$\mathbf{0}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{3}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{4}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{0}$
$\mathbf{1}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$
$\mathbf{1}$	$\mathbf{1}$	$\mathbf{4}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{4}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{2}$

$$
\text { Objective function: } F^{*}=\min _{x} \sum_{\alpha} f_{\alpha}\left(x_{\alpha}\right)
$$

OR Search Spaces

A	B	f_{1}	A	C	f_{2}	A	E	f_{3}	A	F	f_{4}	B	C	f_{5}	B	D	f_{6}	B	E	f_{7}	C	D	f_{8}	E	F	f_{9}
$\mathbf{0}$	$\mathbf{0}$	$\mathbf{2}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{3}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{2}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{4}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{3}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$
$\mathbf{0}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{3}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{4}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{0}$
$\mathbf{1}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$
$\mathbf{1}$	$\mathbf{1}$	$\mathbf{4}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{4}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{2}$

Objective function: $F^{*}=\min _{x} \sum_{\alpha} f_{\alpha}\left(x_{\alpha}\right)$

A

Arc-cost is calculated based on cost functions with empty scope (conditioning)

The Value Function

A	B	f_{1}	A	C	f_{2}	A	E	f_{3}	A	F	f_{4}	B	C	f_{5}	B	D	f_{6}	B	E	f_{7}	C	D	f_{8}	E	F	f_{9}
$\mathbf{0}$	$\mathbf{0}$	$\mathbf{2}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{3}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{2}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{4}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{3}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$
$\mathbf{0}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{3}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{4}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{0}$
$\mathbf{1}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$
$\mathbf{1}$	$\mathbf{1}$	$\mathbf{4}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{4}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{2}$

Objective function: $F^{*}=\min _{x} \sum_{\alpha} f_{\alpha}\left(x_{\alpha}\right)$

A

E 0 $3 / 02 / 23 / 02 / 23 / 022 / 23 / 02 / 23 / 02 / 233 / 02 / 23 / 02 / 23 / 02 / 21 / 20 / 41 / 20 / 41 / 20 / 41 / 20 / 41 / 20 / 41 / 20 / 41 / 20 / 41 / 20 / 44$

Value of node = minimal cost solution below it

The Optimal Solution

A	B	f_{1}	A	C	f_{2}	A	E	f_{3}	A	F	f_{4}	B	C	f_{5}	B	D	f		B	E	E	f_{7}	C	D	f_{8}	E	F	${ }_{9}$
0	0	2	0	0	3	0	0	0	0	0	2	0	0	0	0	0		4	0	0		3	0	0	1	0	0	1
0	1	0	0	1	0	0	1	3	0	1	0	0	1	1	0	1	2	2	0	1		2	0	1	4	0	1	0
1	0	1	1	0	0	1	0	2	1	0	0	1	0	2	1	0	1	1	1	0	0	1	1	0	0	1	0	0
1	1	4	1	1	1	1	1	0	1	1	2	1	1	4	1	1		0	1	1	1	0	1	1	0	1	1	2

Objective function: $F^{*}=\min _{x} \sum_{\alpha} f_{\alpha}\left(x_{\alpha}\right)$

A

 $3 / 02 / 23 / 02 / 23 / / 02 / 23 / 02 / 233 / 02 / 23 / / 02 / 23 / 02 / 23 / 02 / 21 / 20 / 41 / 20 / 41 / 20 / 41 / 20 / 411 / 20 / 41 / 20 / 41 / 20 / 41 / 20 / 44$

Value of node = minimal cost solution below it

Basic Heuristic Search Schemes

Heuristic function $\tilde{f}\left(\hat{x}_{p}\right)$ computes a lower bound on the best extension of partial configuration \hat{x}_{p} and can be used to guide heuristic search.
We focus on:

1. Branch-and-Bound

Use heuristic function $\tilde{f}\left(\hat{x}_{p}\right)$ to prune the depth-first search tree Linear space

$f(\hat{x})=U$

2. Best-First Search

Always expand the node with the lowest heuristic value $\tilde{f}\left(\hat{x}_{p}\right)$
Needs lots of memory

Classic Depth-First Branch and Bound

Each node is a COP subproblem (defined by current conditioning)
$\mathrm{g}(\mathrm{n})$: cost of the path from root to n

$$
\begin{aligned}
& \tilde{f}(n)=g(n)+\tilde{h}(n) \\
& \quad \text { (lower bound) }
\end{aligned}
$$

$$
\text { Prune if } \tilde{f}(n) \geq U B
$$

$\tilde{h}(n)$: under-estimates optimal cost below n
(UB) Upper Bound = best solution so far

Best-First vs. Depth-First Branch and Bound

- Best-First (A^{*}):
- Expands least number of nodes given h
- Requires storing full search tree in memory
- Depth-First BnB:
- Can use linear space
- If finds an optimal solution early, will expand the same search space as BestFirst (if search space is a tree)
- BnB can improve the heuristic function dynamically

How to Generate Heuristics

- The principle of relaxed models
- Mini-Bucket Elimination
- Bounded directional consistency ideas
- Linear relaxations for integer programs

Outline

-
-
- Bounds and heuristics
- Basics of search: DFS versus BFS
- Mini-Bucket Elimination
- Weighted Mini-Buckets and Iterative Cost-Shifting
- Generating Heuristics using Mini-Bucket Elimination
-
-
-

Mini-Bucket Approximation

Split a bucket into mini-buckets => bound complexity

$$
\begin{gathered}
\text { bucket }(\mathrm{X})= \\
\underbrace{\left\{f_{1}, \ldots, f_{r}, f_{r+1}, \ldots, f_{n}\right\}}_{\lambda_{X}(\cdot)=\min _{x} \sum_{i=1}^{n} f_{i}(x, \ldots)} \\
\left\{f_{1}, \ldots, f_{r}\right\} \\
\lambda_{X}^{\prime}(\cdot)=\left(\min _{x} \sum_{i=1}^{r} f_{i}(\cdot)\right)+\left(\min _{x} \sum_{i=r+1}^{n} f_{i}(\cdot)\right) \\
\lambda_{X}^{\prime}(\cdot) \leq \lambda_{X}(\cdot)
\end{gathered}
$$

Exponential complexity decrease: $O\left(e^{n}\right) \rightarrow O\left(e^{r}\right)+O\left(e^{n-r}\right)$

Mini-Bucket Elimination

Mini-Bucket Elimination Semantics

IJCAI 2015

Semantics of Mini-Buckets: Splitting a Node

Variables in different buckets are renamed and duplicated [Kask et al., 2001], [Geffner et al., 2007], [Choi et al., 2007], [Johnson et al. 2007]

Before Splitting:
Network N

After Splitting:
Network N^{\prime}

MBE-MPE(i): Algorithm Approx-MPE

- Input: i - max number of variables allowed in a mini-bucket
- Output: [lower bound (P of a suboptimal solution), upper bound]

Example: approx-mpe(3) versus elim-mpe

[Dechter and Rish, 1997]

Mini-Bucket Decoding

[Dechter and Rish, 2003]

Properties of MBE(i)

- Complexity: $O(r \exp (i))$ time and $O(\exp (i))$ space
- Yields a lower-bound and an upper-bound
- Accuracy: determined by upper/lower (U/L) bound
- Possible use of mini-bucket approximations:
- As anytime algorithms
- As heuristics in search
- Other tasks (similar mini-bucket approximations):
- Belief updating, Marginal MAP, MEU, WCSP, MaxCSP [Dechter and Rish, 1997], [Liu and Ihler, 2011], [Liu and Ihler, 2013]

Outline

-
-
- Bounds and heuristics
- Basics of search: DFS versus BFS
- Mini-Bucket Elimination
- Weighted Mini-Buckets and Iterative Cost-Shifting
- Generating Heuristics using Mini-Bucket Elimination
-
-
-

Cost-Shifting

(Reparameterization) $-\lambda(\mathbf{B})$

\mathbf{B}	\mathbf{C}	$\mathbf{f (B , C)}$
b	b	$6-3$
b	g	$0-3$
g	b	$0+1$
g	g	$6+1$

\mathbf{B}	$\lambda(\mathbf{B})$
\mathbf{b}	3
\mathbf{g}	-1

\mathbf{A}	\mathbf{B}	\mathbf{C}	$\mathbf{f (A , B}, \mathbf{C})$
b	b	b	12
b	b	g	6
b	g	b	0
b	g	g	6
g	b	b	6
g	b	g	0
g	g	b	6
g	g	g	12

Modify the individual functions

- but -
keep the sum of functions unchanged

Dual Decomposition

$F^{*}=\min _{x} \sum_{\alpha} f_{\alpha}(x) \geq \sum_{\alpha} \min _{x} f_{\alpha}(x)$

- Bound solution using decomposed optimization
- Solve independently: optimistic bound

Dual Decomposition

$F^{*}=\min _{x} \sum_{\alpha} f_{\alpha}(x) \quad \geq \max _{\lambda_{i \rightarrow \alpha}} \sum_{\alpha} \min _{x}\left[f_{\alpha}(x)+\sum_{i \in \alpha} \lambda_{i \rightarrow \alpha}\left(x_{i}\right)\right]$

- Bound solution using decomposed optimization
- Solve independently: optimistic bound
- Tighten the bound by reparameterization
- Enforce lost equality constraints via Lagrange multipliers

Dual Decomposition

$$
F^{*}=\min _{x} \sum_{\alpha} f_{\alpha}(x) \quad \geq \max _{\lambda_{i \rightarrow \alpha}} \sum_{\alpha} \min _{x}\left[f_{\alpha}(x)+\sum_{i \in \alpha} \lambda_{i \rightarrow \alpha}\left(x_{i}\right)\right]
$$

Many names for the same class of bounds:

- Dual decomposition [Komodakis et al. 2007]
- TRW, MPLP
[Wainwright et al. 2005, Globerson \& Jaakkola 2007]
- Soft arc consistency [Cooper \& Schiex 2004]
- Max-sum diffusion [Warner 2007]

Dual Decomposition

$$
F^{*}=\min _{x} \sum_{\alpha} f_{\alpha}(x) \quad \geq \max _{\lambda_{i \rightarrow \alpha}} \sum_{\alpha} \min _{x}\left[f_{\alpha}(x)+\sum_{i \in \alpha} \lambda_{i \rightarrow \alpha}\left(x_{i}\right)\right]
$$

Many ways to optimize the bound:

- Sub-gradient descent [Komodakis et al. 2007; Jojic et al. 2010]
- Coordinate descent [Warner 2007; Globerson \& Jaakkola 2007; Sontag et al. 2009; Ihler et al. 2012]
- Proximal optimization [Ravikumar et al. 2010]
- ADMM
[Meshi \& Globerson 2011; Martins et al. 2011; Forouzan \& Ihler 2013]

Mini-Bucket as Dual Decomposition

Mini-Bucket as Dual Decomposition

$$
\begin{aligned}
& \min _{a, c, b}\left[f(a, b)+f(b, c)-\lambda_{B \rightarrow C}(a, c)\right]=0 \\
& \min _{d, e, b}\left[f(b, d)+f(b, e)-\lambda_{B \rightarrow D}(d, e)\right]=0
\end{aligned}
$$

Mini-Bucket as Dual Decomposition

$$
\begin{array}{r}
\min _{a, c, b}\left[f(a, b)+f(b, c)-\lambda_{B \rightarrow C}(a, c)\right]=0 \\
\min _{d, e, b}\left[f(b, d)+f(b, e)-\lambda_{B \rightarrow D}(d, e)\right]=0 \\
\min _{a, e, c}\left[\lambda_{B \rightarrow C}(a, c)+f(a, c)+f(c, e)\right. \\
\left.-\lambda_{C \rightarrow E}(a, e)\right]=0
\end{array}
$$

Mini-Bucket as Dual Decomposition

$$
\begin{array}{r}
\min _{a, c, b}\left[f(a, b)+f(b, c)-\lambda_{B \rightarrow C}(a, c)\right]=0 \\
\min _{d, e, b}\left[f(b, d)+f(b, e)-\lambda_{B \rightarrow D}(d, e)\right]=0 \\
\min _{a, e, c}\left[\lambda_{B \rightarrow C}(a, c)+f(a, c)+f(c, e)\right. \\
\left.-\lambda_{C \rightarrow E}(a, e)\right]=0 \\
\min _{a, d}\left[f(a, d)+\lambda_{B \rightarrow D}(d, e)\right. \\
\left.-\lambda_{D \rightarrow E}(a, e)\right]=0
\end{array}
$$

Mini-Bucket as Dual Decomposition

$$
\begin{array}{r}
\min _{a, c, b}\left[f(a, b)+f(b, c)-\lambda_{B \rightarrow C}(a, c)\right]=0 \\
\min _{d, e, b}\left[f(b, d)+f(b, e)-\lambda_{B \rightarrow D}(d, e)\right]=0 \\
\min _{a, e, c}\left[\lambda_{B \rightarrow C}(a, c)+f(a, c)+f(c, e)\right. \\
\left.-\lambda_{C \rightarrow E}(a, e)\right]=0 \\
\min _{a, d}\left[f(a, d)+\lambda_{B \rightarrow D}(d, e)\right. \\
\left.-\lambda_{D \rightarrow E}(a, e)\right]=0 \\
\min _{a, e}\left[\lambda_{C \rightarrow E}(a, e)+\lambda_{D \rightarrow E}(a, e)\right. \\
\left.-\lambda_{E \rightarrow A}(a)\right]=0
\end{array}
$$

Mini-Bucket as Dual Decomposition

$$
\begin{aligned}
& \min _{a, c, b}\left[f(a, b)+f(b, c)-\lambda_{B \rightarrow C}(a, c)\right]=0 \\
& \min _{d, e, b}\left[f(b, d)+f(b, e)-\lambda_{B \rightarrow D}(d, e)\right]=0 \\
& \min _{a, e, c}\left[\lambda_{B \rightarrow C}(a, c)+f(a, c)+f(c, e)\right. \\
& \left.-\lambda_{C \rightarrow E}(a, e)\right]=0 \\
& \min _{a, d}\left[f(a, d)+\lambda_{B \rightarrow D}(d, e)\right. \\
& \left.-\lambda_{D \rightarrow E}(a, e)\right]=0 \\
& \begin{aligned}
\min _{a, e}\left[\lambda_{C \rightarrow E}(a, e)+\lambda_{D \rightarrow E}\right. & (a, e) \\
& \left.-\lambda_{E \rightarrow A}(a)\right]=0
\end{aligned} \\
& \begin{aligned}
\min _{a, e}\left[\lambda_{C \rightarrow E}(a, e)+\lambda_{D \rightarrow E}\right. & (a, e) \\
& \left.-\lambda_{E \rightarrow A}(a)\right]=0
\end{aligned} \\
& \min _{a}\left[f(a)+\lambda_{E \rightarrow A}(a)\right]=L
\end{aligned}
$$

Mini-Bucket as Dual Decomposition

- Downward pass as cost-shifting
- Can also do cost-shifting within mini-buckets
- "Join graph" message passing
- "Moment matching" version: one message update within each bucket during downward sweep.

Anytime Approximation

anytime-mpe(ε)

Initialize: $i=i_{0}$
While time and space resources are available
$i \leftarrow i+i_{\text {step }}$
$U \leftarrow$ upper bound computed by approx - mpe(i)
$L \leftarrow$ lower bound computed by approx - mpe(i)
keep the best solution found so far
if $1 \leq \frac{U}{L} \leq 1+\varepsilon$, return solution
end
return the largest L and the smallest U

Anytime Approximation

- Can tighten the bound in various ways
- Cost-shifting
- Increase i-bound
(improve consistency between cliques)
(higher order consistency)
- Simple moment-matching step improves bound significantly

Anytime Approximation

- Can tighten the bound in various ways
- Cost-shifting
- Increase i-bound
(improve consistency between cliques)
(higher order consistency)
- Simple moment-matching step improves bound significantly

Anytime Approximation

- Can tighten the bound in various ways
- Cost-shifting
- Increase i-bound
(improve consistency between cliques)
(higher order consistency)
- Simple moment-matching step improves bound significantly

Weighted Mini-Bucket

(for summation bounds)

Exact bucket elimination:
$\lambda_{B}(a, c, d, e)=\sum_{b}[f(a, b) \cdot f(b, c) \cdot f(b, d) \cdot f(b, e)]$
$\leq\left[\sum_{b}^{w_{1}} f(a, b) f(b, c)\right] \cdot\left[\sum_{b}^{w_{2}} f(b, d) f(b, e)\right]$
$=\lambda_{B \rightarrow C}(a, c)$

- $\lambda_{B \rightarrow D}(d, e)$
(mini-buckets)
where $\sum_{x}^{w} f(x)=\left[\sum_{x} f(x)^{1 / w}\right]^{w}$
is the weighted or "power" sum operator

By Holder's inequality,

$$
\begin{aligned}
& \sum_{x}^{w} f_{1}(x) f_{2}(x) \leq\left[\sum_{x}^{w_{1}} f_{1}(x)\right]\left[\sum_{x}^{w_{2}} f_{2}(x)\right] \\
& \text { where } w_{1}+w_{2}=w \text { and } w_{1}>0, w_{2}>0
\end{aligned}
$$

$$
\text { (lower bound if } w_{1}>0, w_{2}<0 \text {) }
$$

Weighted Mini-Bucket

- Related to conditional entropy decomposition [Globerson \& Jaakkola 2008] but, with an efficient, "primal" bound form
- We can optimize the bound over:
- Cost-shifting
- Weights
- Again, involves message passing on JG
- Similar, one-pass "moment matching" variant

Join graph:

WMB for Marginal MAP

Weighted mini-bucket is applicable more generally, since

$$
\begin{cases}\lim _{w \rightarrow 0^{+}} \sum_{x}^{w} f(x)=\max _{x} f(x) & (f(x) \geq 0) \\ \lim _{w \rightarrow 0^{-}} \sum_{x}^{w} f(x)=\min _{x} f(x) & (\mathrm{w}=\text { "temperature" })\end{cases}
$$

So, when w=0+, WMB reduces to max-inference.

For marginal MAP problems, just use different w's:

$$
\max _{x_{B}} \sum_{x_{A}} \prod_{j} f_{j}(x)=\sum_{x_{B}}^{0^{+}} \sum_{x_{A}}^{1} \prod_{j} f_{j}(x)
$$

WMB for Marginal MAP

$$
\left.\begin{array}{rl}
\lambda_{B \rightarrow C}(a, c) & =\sum_{b}^{w_{1}} f(a, b) f(b, c) \\
\lambda_{B \rightarrow D}(d, e) & =\sum_{b}^{w_{2}} f(b, d) f(b, e) \\
& \left(w_{1}+w_{2}=1\right)
\end{array}\right] \begin{aligned}
& \\
& \lambda_{E \rightarrow A}(a)=\max _{e} \lambda_{C \rightarrow E}(a, e) \lambda_{D \rightarrow E}(a, e) \\
& U=\max _{a} f(a) \lambda_{E \rightarrow A}(a)
\end{aligned}
$$

Can optimize over cost-shifting and weights

Marginal MAP:

$U=$ upper bound (single-pass "MM" or with iterative message passing)

Outline

-
-
- Bounds and heuristics
- Basics of search: DFS versus BFS
- Mini-Bucket Elimination
- Weighted Mini-Buckets and Iterative Cost-Shifting
- Generating Heuristics using Mini-Bucket Elimination
-
-

Generating Heuristics for Graphical Models

Given a cost function:

$$
f(a, \ldots, e)=f(a)+f(a, b)+f(a, c)+f(a, d)+f(b, c)+f(b, d)+f(b, e)+f(c, e)
$$

define an evaluation function over a partial assignment as the cost of its best extension:
$f^{*}(\hat{a}, \hat{e}, D)=\min _{b, c} F(\hat{a}, b, c, D, \hat{e})$

$$
=g(\hat{a}, \hat{e}, D)+h^{*}(\hat{a}, \hat{e}, D)
$$

[Kask and Dechter, 2001]

Static Mini-Bucket Heuristics

Given a partial assignment, $[\hat{a}=1, \hat{e}=0]$
(weighted) mini-bucket gives an admissible heuristic:
mini-buckets

cost to go:

$$
\begin{aligned}
\tilde{h}(\hat{a}, \hat{e}, D)= & \lambda_{C \rightarrow E}(\hat{a}, \hat{e}) \\
& +f(\hat{a}, D)+\lambda_{B \rightarrow D}(D, \hat{e})
\end{aligned}
$$

(admissible: $\tilde{h}(\hat{a}, \hat{e}, D) \leq h^{*}(\hat{a}, \hat{e}, D)$) cost so far:

$$
g(\hat{a}, \hat{e})=f(A=\hat{a})
$$

Properties of the Heuristic

- MB heuristic is monotone, admissible
- Computed in linear time
- IMPORTANT
- Heuristic strength can vary by MB(i)
- Higher i-bound \rightarrow more pre-processing \rightarrow more accurate heuristic \rightarrow less search
- Allows controlled trade-off between preprocessing and search

Dynamic Mini-Bucket Heuristics

- Rather than pre-compile, compute the heuristics, dynamically, during search
- Dynamic MB: use the Mini-Bucket algorithm to produce a bound for any node during search
- Dynamic MBTE: compute heuristics simultaneously for all un-instantiated variables using Mini-Bucket-Tree Elimination (MBTE)
- MBTE is an approximation scheme defined over cluster trees. It outputs multiple bounds for each variable and value extension at once

Outline

- Bounds and heuristics
- ANDIOR Search

Outline

-
-
-
- AND/OR Search
- AND/OR Search Spaces
- AND/OR Branch and Bound
- Best-First AND/OR Search
- Advanced Searches and Tasks

Solution Techniques

AND/OR search

Search: Conditioning

Inference: Elimination

Classic OR Search Space

A	B	f_{1}	A	C	f_{2}	A	E	f_{3}	A	F	f_{4}	B	C	f_{5}	B	D	f		B	E	E	f_{7}	C	D	f_{8}	E	F	${ }_{9}$
0	0	2	0	0	3	0	0	0	0	0	2	0	0	0	0	0		4	0	0		3	0	0	1	0	0	1
0	1	0	0	1	0	0	1	3	0	1	0	0	1	1	0	1	2	2	0	1		2	0	1	4	0	1	0
1	0	1	1	0	0	1	0	2	1	0	0	1	0	2	1	0	1	1	1	0	0	1	1	0	0	1	0	0
1	1	4	1	1	1	1	1	0	1	1	2	1	1	4	1	1		0	1	1	1	0	1	1	0	1	1	2

$$
\text { Objective function: } F^{*}=\min _{X} \sum_{i} f_{i}(X)
$$

A

The AND/OR Search Tree

Pseudo tree
[Freuder and Quinn, 1985]

IJCAI 2015
[Dechter and Mateescu, 2007]

The AND/OR Search Tree

Pseudo tree

Weighted AND/OR Search Tree

A	B	f_{1}	A	C	f_{2}	A	E	f_{3}	A	F	f_{4}	B	C	f_{5}	B	D	f_{6}	B	E	f_{7}	C	D	f_{8}		F	f_{9}
0	0	2	0	0	3	0	0	0	0	0	2	0	0	0	0	0	4	0	0	3	0	0	1	0	0	1
0	1	0	0	1	0	0	1	3	0	1	0	0	1	1	0	1	2	0	1	2	0	1	4	0	1	0
1	0	1	1	0	0	1	0	2	1	0	0	1	0	2	1	0	1	1	0	1	1	0	0	1	0	0
1	1	4	1	1	1	1	1	0	1	1	2	1	1	4	1	1	0	1	1	0	1	1	0	1	1	2

Objective function: $F^{*}=\min _{X} \sum_{i} f_{i}(X)$

Node Value (bottom-up evaluation)

OR - minimization
AND - summation

AND/OR versus OR Spaces

AND/OR versus OR Spaces

width depth	OR space		AND/OR space			
		Time (sec)	Nodes	Time (sec)	AND nodes	OR nodes
5	10	3.15	$2,097,150$	0.03	10,494	5,247
4	9	3.13	$2,097,150$	0.01	5,102	2,551
5	10	3.12	$2,097,150$	0.03	8,926	4,463
4	10	3.12	$2,097,150$	0.02	7,806	3,903
5	13	3.11	$2,097,150$	0.10	36,510	18,255

Random graphs with 20 nodes, 20 edges and 2 values per node

Complexity of AND/OR Tree Search

AND/OR tree

OR tree

Space

$O(n)$
$O(n)$

Time

$$
\begin{aligned}
& O\left(n d^{t}\right) \\
O\left(n d^{\left(w^{*} \log n\right)}\right) & O\left(d^{n}\right)
\end{aligned}
$$

[Freuder \& Quinn85], [Collin, Dechter \& Katz91], [Bayardo \& Miranker95], [Darwiche01]

$$
\begin{array}{ll}
d=\text { domain size } & n=\text { number of variables } \\
t=\text { depth of pseudo tree } & w^{*}=\text { induced width }
\end{array}
$$

Constructing Pseudo Trees

- AND/OR serch algorithms are influenced by the quality of the pseudo tree
- Finding minimal induced width / depth pseudo tree is NP-hard
- Heuristics
- Min-Fill (min induced width)
- Hypergraph partitioning (min depth)

Constructing Pseudo Trees

- Min-Fill [kjaerulff, 1990]
- Depth-first traversal of the induced graph obtained along the min-fill elimination order heuristic
- Variables ordered according to smallest "fill-set"
- Hypergraph Partitioning [Karypis and Kumar, 2000]
- Functions are vertices in the hypergraph and variables are hyperedges
- Recursive decomposition of the hypergraph while minimizing the separator size at each step
- Using state-of-the-art software package hMeTiS

Quality of the Pseudo Trees

Network	hypergraph		min-fill	
	W^{*}	depth	w^{\star}	depth
barley	7	13	7	23
diabetes	7	16	4	77
link	21	40	15	53
mildew	5	9	4	13
munin1	12	17	12	29
munin2	9	16	9	32
munin3	9	15	9	30
munin4	9	18	9	30
water	11	16	10	15
pigs	11	20	11	26

Bayesian Networks Repository

Network	hypergraph		min-fill	
	w^{*}	depth	w^{*}	depth
spot5	47	152	39	204
spot28	108	138	79	199
spot29	16	23	14	42
spot42	36	48	33	87
spot54	12	16	11	33
spot404	19	26	19	42
spot408	47	52	35	97
spot503	11	20	9	39
spot505	29	42	23	74
spot507	70	122	59	160

SPOT5 Benchmark

From Search Trees to Search Graphs

- Any two nodes that root identical subtrees or subgraphs can be merged

IJCAI 2015

From Search Trees to Search Graphs

- Any two nodes that root identical subtrees or subgraphs can be merged

IJCAI 2015

Merging Based on Contexts

- One way of recognizing nodes that can be merged (based on the graph structure)
- context $(X)=$ ancestors of X in the pseudo tree that are connected to X or to descendants of X

AND/OR Search Graph

A		$f_{a b}$	A	C		A	E	$f_{\text {ae }}$	A	F		af	B				B	I	$f_{b d}$	B				C	D	f_{cd}	E		ef
0	0	2	0	0	3	0	0	0	0	0	2	2	0	0	0	0	0	0	4	0	0		3	0	0	1	0	0	1
0	1	0	0	1	0	0	1	3	0	1	0	0	0	1		1	0	1	2	0	1	12	2	0	1	4	0	1	0
1	0	1	1	0	0	1	0	2	1	0	0	0	1	0	2	2	1	0	1	1	0		1	1	0	0	1	0	0
1	1	4	1	1	1	1	1	0	1	1	2	2	1	1		4	1	1	0	1	1		0	1	1	0	1	1	2

Objective function: $F^{*}=\min _{x} \sum_{\alpha} f_{\alpha}\left(x_{\alpha}\right)$

Cache table for D

How Big Is The Context?

- Theorem: The maximum context size for a pseudo tree is equal to the treewidth of the graph along the pseudo tree.

(CKHABEJLNODPMFG)

Complexity of AND/OR Graph Search

AND/OR graph
 OR graph

Space

$O\left(n d^{w^{*}}\right)$
$O\left(n d^{p w^{*}}\right)$

Time

$$
O\left(n d^{w^{*}}\right) \quad O\left(n d^{p w^{*}}\right)
$$

d = domain size
$\mathrm{w}^{*}=$ induced width
$\mathrm{n}=$ number of variables
pw* = pathwidth

$$
w^{*} \leq p w^{*} \leq w^{*} \log n
$$

All Four Search Spaces

Full OR search tree
126 nodes

Full ANDIOR search tree
54 AND nodes

Context minimal OR search graph
28 nodes

Context minimal AND/OR search graph

18 AND nodes

Outline

- Bounds and heuristics
- AND/OR Search
- AND/OR Branch and Bound
-
-
-
-

Classic Depth-First Branch and Bound

Each node is a COP subproblem (defined by current conditioning)
$\mathrm{g}(\mathrm{n})$: cost of the path from root to n

$$
\begin{aligned}
& \tilde{f}(n)=g(n)+\tilde{h}(n) \\
& \quad \text { (lower bound) }
\end{aligned}
$$

$$
\text { Prune if } \tilde{f}(n) \geq U B
$$

$\tilde{h}(n)$: under-estimates optimal cost below n
(UB) Upper Bound = best solution so far

Partial Solution Tree

Pseudo tree

($\mathrm{A}=0, \mathrm{~B}=0, \mathrm{C}=0, \mathrm{D}=0$)

Extension($\left.T^{\prime}\right)$ - solution trees that extend T^{\prime}

Exact Evaluation Function

$$
f^{*}\left(T^{\prime}\right)=w(A, 0)+w(B, 1)+w(C, 0)+w(D, 0)+v(D, 0)+v(F)
$$

Exact Evaluation Function

B	D	E	$f_{3}(B D E)$
0	0	0	6
0	0	1	4
0	1	0	8
0	1	1	5
1	0	0	9
1	0	1	3
1	1	0	7
1	1	1	4

$$
f\left(T^{\prime}\right)=w(A, 0)+w(B, 1)+w(C, 0)+w(D, 0)+h(D, 0)+h(F)=12 \leq f^{*}\left(T^{\prime}\right)
$$

AND/OR Branch and Bound Search

AND/OR Branch and Bound (AOBB)

- Associate each node n with a heuristic lower bound $h(n)$ on $v(n)$
- EXPAND (top-down)
- Evaluate $f\left(T^{\prime}\right)$ and prune search if $f\left(T^{\prime}\right) \geq$ UB
- Generate successors of the tip node n
- UPDATE (bottom-up)
- Update value of the parent p of n
- OR nodes: minimization
- AND nodes: summation

AND/OR Branch and Bound with Caching

- Associate each node n with a heuristic lower bound $h(n)$ on $v(n)$
- EXPAND (top-down)
- Evaluate $f\left(T^{\prime}\right)$ and prune search if $f\left(T^{\prime}\right) \geq$ UB
- If not in cache, generate successors of the tip node n
- UPDATE (bottom-up)
- Update value of the parent p of n
- OR nodes: minimization
- AND nodes: summation
- Cache value of n based on context

Breadth-Rotating AOBB

- AND/OR decomposition vs. depth-first search:
- Compromises anytime property of AOBB.
solved optimally

Breadth-Rotating AOBB

- AND/OR decomposition vs. depth-first search:
- Compromises anytime property of AOBB.
- Breadth-Rotating AOBB:
- Combined breadth/depth-first schedule.
- Maintains depth-first complexity.
- Superior experimental results.

Breadth-Rotating AOBB

- AND/OR decomposition vs. depth-first search:
- Compromises anytime property of AOBB.
- Breadth-Rotating AOBB:
- Combined breadth/depth-first schedule.
- Maintains depth-first complexity.
- Superior experimental results.

Breadth-Rotating AOBB

- AND/OR decomposition vs. depth-first search:
- Compromises anytime property of AOBB.
- Breadth-Rotating AOBB:
- Combined breadth/depth-first schedule.
- Maintains depth-first complexity.
- Superior experimental results.

Breadth-Rotating AOBB

- AND/OR decomposition vs. depth-first search:
- Compromises anytime property of AOBB.
- Breadth-Rotating AOBB:
- Combined breadth/depth-first schedule.
- Maintains depth-first complexity.
- Superior experimental results.

Breadth-Rotating AOBB

- AND/OR decomposition vs. depth-first search:
- Compromises anytime property of AOBB.
- Breadth-Rotating AOBB:
- Combined breadth/depth-first schedule.
- Maintains depth-first complexity.
- Superior experimental results.

- Won PASCAL'11 Inference Challenge MPE track.

Mini-Bucket Heuristics for AND/OR Search

- The depth-first and best-first AND/OR search algorithms use $h(n)$ that can be computed:
- Static Mini-Bucket Heuristics
- Pre-compiled
- Reduced computational overhead
- Less accurate
- Static variable ordering
- Dynamic Mini-Bucket Heuristics
- Computed dynamically, during search
- Higher computational overhead
- High accuracy
- Dynamic variable ordering

Bucket Elimination

Ordering: (A, B, C, D, E, F, G)

Exact evaluation of $(A=a, B=b)$ below C : $h^{*}(a, b, C)=h^{D}(a, b, C)+h^{E}(b, C)$

Static Mini-Bucket Heuristics

$$
\begin{aligned}
h(a, b, C) & =h^{D}(a)+h^{D}(b, C)+h^{E}(b, C) \\
& \leq h^{\star}(a, b, C)
\end{aligned}
$$

Dynamic Mini-Bucket Heuristics

Ordering: (A, B, C, D, E, F, G)

IJCAI 2015

Dynamic Variable Orderings

- Variable ordering heuristics
- Semantic-based
- Aim at shrinking the size of the search space based on context and current value assignments
- e.g., min-domain, min-dom/wdeg, min reduced cost
- Graph-based
- Aim at maximizing the problem decomposition
- e.g., pseudo tree arrangement

Partial Variable Orderings (PVO)

Primal graph

Variable Groups/Chains:

- $\{A, B\}$
- $\{C, D\}$
- $\{\mathrm{E}, \mathrm{F}\}$

Instantiate $\{\mathrm{A}, \mathrm{B}\}$ before $\{C, D\}$ and $\{E, F\}$

* $\{A, B\}$ is a separator/chain

Variables on chains in the pseudo tree can be instantiated dynamically, based on some semantic ordering heuristic

* Similar idea is exploited by BTD (Backtracking with Tree Decomposition) [Jegou and Terrioux, 2004]

Full Dynamic Variable Ordering (DVO)

Domains $\quad D_{A}=\{0,1\} \quad D_{B}=\{0,1,2\}$ $\mathrm{D}_{\mathrm{E}}=\{0,1,2,3\}$
$\mathrm{D}_{\mathrm{C}}=\mathrm{D}_{\mathrm{D}}=\mathrm{D}_{\mathrm{F}}=\mathrm{D}_{\mathrm{G}}=\mathrm{D}_{\mathrm{H}}=\mathrm{D}_{\mathrm{E}}$
Cost functions

A	B	$f(A B)$	A	E	$f(A E)$
0	0	$\mathbf{3}$	0	0	0
0	1	8	0	1	$\mathbf{5}$
0	2	$\mathbf{8}$	0	2	$\mathbf{1}$
1	0	4	0	3	$\mathbf{4}$
1	1	0	1	0	$\mathbf{8}$
1	2	6	1	1	$\mathbf{8}$
			1	2	0
			1	3	$\mathbf{5}$

* Similar idea exploited in \#SAT [Bayardo and Pehoushek, 2000]

Dynamic Separator Ordering (DSO)

Constraint Propagation may create singleton variables in P1 and P2 (changing the problem's structure), which in turn may yield smaller separators

* Similar idea exploited in SAT [Li and val Beek, 2004]

Backtrack with Tree Decomposition

tree decomposition ($\mathrm{w}=2$)

BTD:

- AND/OR graph search (caching on separators)
- Partial variable ordering (dynamic inside clusters)
- Maintaining local consistency

Backtrack with Tree Decomposition

- Before the search
- Merge clusters with a separator size > p
- Time O(k exp(w*)), Space O(exp(p))
- More freedom for variable ordering heuristics
- Properties
- BTD(-1) is Depth-First Branch and Bound
- BTD(0) solves connected components independently
- BTD(1) exploits bi-connected components
- BTD(s) is Backtrack with Tree Decomposition (s: largest separator size)

Outline

-
-
-
- AND/OR Search
-
- AND/OR Branch and Bound
- Best-First AND/OR Search
- Advanced Searches and Tasks

Outline

-
-
-
- AND/OR Search
-
- AND/OR Branch and Bound
- Best-First AND/OR Search
- Advanced Searches and Tasks

Basic Heuristic Search Schemes

Heuristic function $\tilde{f}\left(\hat{x}_{p}\right)$ computes a lower bound on the best extension of partial configuration \hat{x}_{p} and can be used to guide heuristic search.
We focus on:

1. Branch-and-Bound

Use heuristic function $\tilde{f}\left(\hat{x}_{p}\right)$ to prune the depth-first search tree Linear space

$f(\hat{x})=U$

2. Best-First Search

Always expand the node with the lowest heuristic value $\tilde{f}\left(\hat{x}_{p}\right)$
Needs lots of memory

Best-First Principle

- Best-first search expands first the node with the best heuristic evaluation function among all nodes encountered so far
- Never expands nodes whose cost is beyond the optimal one, unlike depth-first algorithms [Dechter and Pearl, 1985]
- Superior among memory intensive algorithms employing the same heuristic evaluation function

Best-First AND/OR Search (AOBF)

- Maintains the explicated AND/OR search graph in memory
- Top-Down Step (EXPAND)
- Trace down marked connectors from root
- E.g., best partial solution tree
- Expand a tip node n by generating its successors n'
- Associate each successor with heuristic estimate $h\left(n^{\prime}\right)$
- Initialize $\mathbf{q (n)}=\mathbf{h (n ')}$ (q-value $\mathrm{q}(\mathrm{n})$ is a lower bound on $v(n)$

- Bottom-Up Step (UPDATE)

- Update node values $q(n)$
- OR nodes: minimization
- AND nodes: summation
- Mark the most promissing partial solution tree from the root
- Label the nodes as SOLVED:
- OR node is SOLVED if marked child is SOLVED
- AND node is SOLVED if all children are SOLVED
- Terminate when root node is SOLVED
[Marinescu and Dechter, 2006; 2009]

AOBF versus AOBB

- AOBF with the same heuristic as AOBB is likely to expand the smallest search space
- This translates into significant time savings
- AOBB can use far less memory by avoiding for example dead-caches, whereas AOBF keeps in memory the explicated search graph
- AOBB is anytime, whereas AOBF is not

Recursive Best-First AND/OR Search

- AND/OR search algorithms (AOBB and AOBF)
- AOBB (depth-first): memory efficient but may explore many suboptimal subspaces
- AOBF (best-first): explores the smallest search space but may require huge memory
- Recursive best-first search for AND/OR graphs
- Requires limited memory (even linear)
- Nodes are explored in best-first order
- Main issue: some nodes will be re-expanded (want to minimize this)

Recursive Best-First AND/OR Search

- Transform best-first search (AO* like) into depth-first search using a threshold controlling mechanism (explained next)
- Based on Korf's classic RBFS
- Adapted to the context minimal AND/OR graph
- Nodes are still expanded in best-first order
- Node values are updated in the usual manner based on the values of their successors
- OR nodes by minimization
- AND nodes by summation
- Some nodes will be re-expanded
- Use caching (limited memory) based on contexts
- Use overestimation of the threshold to minimize node re-expansions

RBFAOO - Example (1)

- Expand OR node A by generating its AND successors: $(A, 0)$ and (A,1)
- Best successor is $(\mathrm{A}, 0)$
- Set threshold $\theta(A, 0)=4$ - indicates next best successor is (A,1)
- We can backtrack to $(\mathrm{A}, 1)$ if the updated cost of the subtree below $(\mathrm{A}, 0)$ exceeds the threshold $\theta=4$

RBFAOO - Example (2)

- Expand AND node $(A, 0)$ by generating its OR successors: B and C
- Update node value $\mathrm{q}(\mathrm{A}, 0)=\mathrm{h}(\mathrm{B})+\mathrm{h}(\mathrm{C})=3-$ threshold OK

RBFAOO - Example (3)

- Expand OR node B by generating its AND successor: $(B, 0)$
- Update node values $q(B)=4$ and $q(A, 0)=6-$ threshold NOT OK

RBFAOO - Example (4)

- Backtrack to $(\mathrm{A}, 0)$ and select next best node $(\mathrm{A}, 1)$
- Set threshold $\theta(A, 1)=6$ (updated value of the left subtree)
- Cache (minimize re-expansion) or discard left subtree

RBFAOO - Overestimation

- Some of the nodes in the subtree below $(\mathrm{A}, 0)$ may be re-expanded
- Simple overestimation scheme for minimizing the node re-expansions
- Inflate the threshold with some small δ : $\theta^{\prime}=\theta+\delta(\delta>0)$
- In practice, we determine δ experimentally (e.g., $\delta=1$ worked best)

Empirical Evaluation

Grid and Pedigree benchmarks; Time limit 1 hour.

Outline

-
-
-
- AND/OR Search
-
-
-
- Advanced Searches and Tasks

Marginal MAP

- Occurs in many applications involving hidden variables
- Seeks a partial configuration of variables with maximum marginal probability
- Complexity: NPPP-complete
- State-of-the-art is DFS BnB (over the MAP variables)
- Guided by unconstrained join-tree based upper bounds
- Advances
- AND/OR Branch and Bound and Best-First AND/OR Search algorithms
- Heuristics based on Weighted Mini-Buckets
- WMB-MM: single pass with cost-shifting by moment matching
- WMB-JG: iterative updates by message passing along the join-graph

Marginal MAP

- Occurs in many applications involving hidden variables
- Seeks a partial configuration of variables with maximum marginal probability
- Complexity: NPPP-complete
- State-of-the-art is DFS BnB (over the MAP variables)
- Guided by unconstrained join-tree based upper bounds
- Advances
- AND/OR Branch and Bound and Best-First AND/OR Search algorithms
- Heuristics based on Weighted Mini-Buckets
- WMB-MM: single pass with cost-shifting by moment matching
- WMB-JG: iterative updates by message passing along the join-graph

AND/OR Search Space for MMAP

constrained pseudo tree

AND/OR Search Space for MMAP

- Node types
- OR (MAP): max
- OR (SUM): sum
- AND: multiplication
- Arc weights
- derived from input F
- Problem decomposition over MAP variables

AND/OR Search Algorithms

- AOBB: Depth-First AND/OR Branch and Bound
- Depth-first traversal of the AND/OR search graph
- Prune only at OR nodes that correspond to MAP variables
- Cost of MAP assignment obtained by searching the SUM sub-problem
- AOBF: Best First AND/OR Search
- Best-first (AO*) traversal of the AND/OR space corresponding to the MAP variables
- SUM subproblem solved exactly
- RBFAOO: Recursive Best-First AND/OR Search
- Recursive best-first traversal of the AND/OR graph
- For SUM subproblems, the threshold is set to ∞ (equivalent to depthfirst search)
[Marinescu, Dechter and Ihler; 2014; 2015] ${ }^{\text {ICAI } 2015}$

Quality of the Upper Bounds

Average relative error wrt tightest upper bound. 10 iterations for WMB-JG(i).

AOBB versus BB

Number of instances solved and median CPU time (sec). 10 iterations for WMB-JG(i).

AOBF/RBFAOO versus AOBB

Number of instances solved and median CPU time (sec). Time limit 1 hour.

Searching for M Best Solutions

- New inference and search based algorithms for the task of finding the m best solutions
- Search: m-A*, m-BB
- Inference: elim-m-opt, BE+m-BF
- Extended m-A* and m-BB to AND/OR search spaces for graphical models, yielding m-AOBB and m-AOBF
- Competitive and often superior to alternative (approximate) approaches based on LP relaxations
- e.g., [Fromer and Globerson, 2009], [Batra, 2012]

Searching for M Best Solutions

Empirical Evaluation

Grid instances; Time limit $=3 \mathrm{~h}$; Memory bound $=4 \mathrm{~GB}$

Hybrid of Variable Elimination and Search

- Tradeoff space and time

Search Basic Step: Conditioning

Variable Branching by Conditioning

Search Basic Step: Conditioning

Variable Branching by Conditioning

Select a variable

Search Basic Step: Conditioning

 Variable Branching by Conditioning

IJCAI 2015

Search Basic Step: Conditioning

 Variable Branching by Conditioning

The Cycle-Cutset Scheme

Condition until Treeness

- Cycle-cutset
- i-cutset
- C(i)-size of i-cutset

<Tree part
(F) (E)
(C)
(D)

Space: $\exp (\mathrm{i})$, Time: $\mathbf{O}(\exp (\mathbf{i}+\mathrm{c}(\mathrm{i}))$
IJCAI 2015

Eliminate First

IJCAI 2015

Eliminate First

IJCAI 2015

Eliminate First

IJCAI 2015

Hybrid Variants

- Condition, condition, condition, ... and then only eliminate (w-cutset, cycle-cutset)
- Eliminate, eliminate, eliminate, ... and then only search
- Interleave conditioning and elimination steps (elim-cond(i), VE+C)

Interleaving Conditioning and Elimination

Interleaving Conditioning and Elimination

IJCAI 2015

Boosting Search with Variable Elimination

- At each search node
- Eliminate all unassigned variables with degree $\leq p$
- Select an assigned variable A
- Branch on the values of A
- Properties
- BB+VE(-1) is Depth-First Branch and Bound
- $\mathrm{BB}+\mathrm{VE}(\mathrm{w})$ is Variable Elimination
- $\mathrm{BB}+\mathrm{VE}(1)$ is similar to Cycle-Cutset
- $\mathrm{BB}+\mathrm{VE}(2)$ is well suited with soft local consistencies (add binary constraints only, independent of elimination order)

Mendelian Error Detection

- Given a pedigree and partial observations (genotypings)
- Find the erroneous genotypings, such that their removal restores consistency
- Checking consistency is NP-complete [Aceto et al, 2004]
- Minimize the number of genotypings to be removed
- Maximize the joint probability of true genotypes (MPE/MAP)

$$
\text { Pedigree problem size: } n \leq 20,000 ; k=3-66 ; e(3) \leq 30,000
$$

Pedigree

- toulbar2 v0.5 with EDAC and binary branching
- Minimize the number of genotypings to be removed
- CPU time to find and prove optimality on a 3 GHz computer with 16 GB

IJCAI 2015

Outline

- Bounds and heuristics

- Exploiting parallelism

Outline

- Exploiting parallelism
- Distributed and parallel search

Contributions

- Propose parallel $A O B B$, first of its kind.
- Runs on computational grid.
- Extends parallel tree search paradigm.
- Two variants with different parallelization logic.
- Analysis of schemes' properties:
- Performance considerations and trade-offs.
- Granularity vs. overhead and redundancies.
- Large-scale experimental evaluation:
- Good parallel performance in many cases.
- Analysis of some potential performance pitfalls.

Context and Related Work

- Task parallelism (vs. data parallelism):
- Extensive computation on small input.

Context and Related Work

- Task parallelism (vs. data parallelism):
- Extensive computation on small input.
- Computational grid framework:
- Independent hosts, limited or no communication.

Context and Related Work

- Task parallelism (vs. data parallelism):
- Extensive computation on small input.
- Computational grid framework:
- Independent hosts, limited or no communication.
- Parallel tree search ("stack splitting"):
- Typically uses shared memory for dynamic load balancing and cost bound updates for BaB.
- Not feasible in grid setup.

Context and Related Work

- Task parallelism (vs. data parallelism):
- Extensive computation on small input.
- Computational grid framework:
- Independent hosts, limited or no communication.
- Parallel tree search ("stack splitting"):
- Typically uses shared memory for dynamic load balancing and cost bound updates for BaB.
- Not feasible in grid setup.
- Motivation: Superlink Online.
- Distributed linkage (likelihood) computation.

Parallel AOBB Illustrated

- Master process applies partial conditioning to obtain parallel subproblems.

Parallel AOBB Illustrated

- Master process applies partial conditioning to obtain parallel subproblems.

Parallel AOBB Illustrated

- Master process applies partial conditioning to obtain parallel subproblems.

Parallel AOBB Illustrated

- Master process applies partial conditioning to obtain parallel subproblems.

Parallel AOBB Illustrated

- Master process applies partial conditioning to obtain parallel subproblems.

Parallel AOBB Illustrated

- Master process applies partial conditioning to obtain parallel subproblems.

Parallel AOBB Illustrated

- Master process applies partial conditioning to obtain parallel subproblems.

Parallel AOBB Illustrated

- Master process applies partial conditioning to obtain parallel subproblems.

8 independent subproblem search spaces

Fixed-depth Parallel AOBB

- Algorithm receives cutoff depth d as input:
- Expand nodes centrally until depth d.
- At depth d, submit to grid job queue.

Fixed-depth Parallel AOBB

- Algorithm receives cutoff depth d as input:
- Expand nodes centrally until depth d.
- At depth d, submit to grid job queue.

Fixed-depth Parallel AOBB

- Algorithm receives cutoff depth d as input:
- Expand nodes centrally until depth d.
- At depth d, submit to grid job queue.
- Explored subproblem search spaces potentially very unbalanced.

Fixed-depth Parallel AOBB

- Algorithm receives cutoff depth d as input:
- Expand nodes centrally until depth d.
- At depth d, submit to grid job queue.
- Explored subproblem search spaces potentially very unbalanced.

Fixed-depth Parallel AOBB

- Algorithm receives cutoff depth d as input:
- Expand nodes centrally until depth d.
- At depth d, submit to grid job queue.
- Explored subproblem search spaces potentially very unbalanced.

Variable-depth Parallel AOBB

- Given subproblem count p and estimator N :
- Iteratively deepen frontier until size p reached:
- Pick subproblem n with largest estimate $N(n)$ and split.
- Submit subproblems into job queue by descending complexity estimates.

Variable-depth Parallel AOBB

- Given subproblem count p and estimator N :
- Iteratively deepen frontier until size p reached:
- Pick subproblem n with largest estimate $N(n)$ and split.
- Submit subproblems into job queue by descending complexity estimates.
- Hope to achieve better subproblem balance.

Variable-depth Parallel AOBB

- Given subproblem count p and estimator N :
- Iteratively deepen frontier until size p reached:
- Pick subproblem n with largest estimate $N(n)$ and split.
- Submit subproblems into job queue by descending complexity estimates.
- Hope to achieve better subproblem balance.

Variable-depth Parallel AOBB

- Given subproblem count p and estimator N :
- Iteratively deepen frontier until size p reached:
- Pick subproblem n with largest estimate $N(n)$ and split.
- Submit subproblems into job queue by descending complexity estimates.
- Hope to achieve better subproblem balance.

Variable-depth Parallel AOBB

- Given subproblem count p and estimator N :
- Iteratively deepen frontier until size preached:
- Pick subproblem n with largest estimate $N(n)$ and split.
- Submit subproblems into job queue by descending complexity estimates.
- Hope to achieve better subproblem balance.

Aside: Modeling AOBB Complexity

- Model number of nodes $N(n)$ in subproblem as exp. function of subproblem features $\varphi_{i}(n)$:

$$
N(n)=\exp \left(\sum_{i} \lambda_{i} \varphi_{i}(n)\right)
$$

Aside: Modeling AOBB Complexity

- Model number of nodes $N(n)$ in subproblem as exp. function of subproblem features $\varphi_{i}(n)$:

$$
N(n)=\exp \left(\sum_{i} \lambda_{i} \varphi_{i}(n)\right)
$$

- Logarithm yields linear regression problem.
- Minimize MSE with Lasso regularization. [Tibshirani]

$$
\frac{1}{m} \sum_{j=1}^{m}\left(\sum_{i} \lambda_{i} \varphi_{i}\left(n_{k}\right)-\log N\left(n_{k}\right)\right)^{2}+\alpha \sum_{i}\left|\lambda_{i}\right|
$$

- Full details:
- "A Case Study in Complexity Estimation: Towards Parallel Branch-and-Bound over Graphical Models", UAI 2012.

35 Subproblem Features
 Subproblem variable statistics (static):

- Characterize subproblem:

- Static, structural properties:
- Number of variables.
- Avg. and max. width.
- Height of sub pseudo tree.
- State space bound SS .
- Dynamic, runtime properties:
- Upper and lower bound on subproblem cost.
- Pruning ratio and depth of small AOBB probe.
- only $5 n$ nodes, very fast.

IJCȦI 2015

1: Number of variables in subproblem
2-6: Min, Max, mean, average, and std. dev. of variable domain sizes in subproblem.
Pseudo tree depth/leaf statistics (static):
7: Depth of subproblem root in overall search space.
8-12: Min, max, mean, average, and std. dev. of depth of subproblem pseudo tree leaf nodes, counted from subproblem root
13: Number of leaf nodes in subproblem pseudo tree
Pseudo tree width statistics (static):
14-18: Min, max, mean, average, and std. dev. of induced width of variables within subproblem.
19-23: Min, max, mean, average, and std. dev. of induced width of variables within subproblem, conditioned on subproblem root context.
State space bound (static):
24: State space size upper bound on subproblem search space size.
Subproblem cost bounds (dynamic):
25: Lower bound L on subproblem solution cost, derived from current best overall solution.
26: Upper bound U on subproblem solution cost, provided by mini bucket heuristics.
27: Difference $U-L$ between upper and lower bound, expressing "constrainedness" of the subproblem.
Pruning ratios (dynamic), based on running AOBB for $5 n$ node expansions:

28: Ratio of nodes pruned using the heuristic
29: Ratio of nodes pruned due of determinism (zero probabilities, e.g.)
30: Ratio of nodes corresponding to pseudo tree leaf. AOBB sample (dynamic), based on running AOBB for $5 n$ node expansions:

31: Average depth of terminal search nodes within probe
32: Average node depth within probe (denoted \bar{d}).
33: Average branching degree, defined as $\sqrt[d]{5 n}$
Various (static):
34: Mini bucket i-bound parameter
35: Max. subproblem variable context size minus mini bucket i-bound.

Example Estimation Results

- Across subproblems from several domains.
- Hold out test data for model learning.

Assessing Parallel Performance

- Sequential AOBB performance baseline:
- $T_{\text {seq }}$: sequential runtime.
- $N_{\text {seq }}$: number of sequential node expansions.

Assessing Parallel Performance

- Sequential AOBB performance baseline:
- $T_{\text {seq }}$: sequential runtime.
- $N_{\text {seq }}$: number of sequential node expansions.
- Parallel AOBB performance metrics:
- $T_{\text {par }}$: parallel runtime including central preprocessing.
- $\mathrm{S}_{\text {par }}$: Parallel speedup $T_{\text {seq }} / T_{p a r}$.

Assessing Parallel Performance

- Sequential AOBB performance baseline:
- $T_{\text {seq }}$: sequential runtime.
- $N_{\text {seq: }}$: number of sequential node expansions.
- Parallel AOBB performance metrics:
- $T_{\text {par: }}$: parallel runtime including central preprocessing.
- $\mathrm{S}_{p a r}$: Parallel speedup $T_{\text {seq }} / T_{p a r}$.
- $N_{p a r}$: Node expansions across all subproblems.
- $O_{p a r}$: Relative parallel overhead $N_{p a r} / N_{s e q}$.

Assessing Parallel Performance

- Sequential AOBB performance baseline:
- $T_{\text {seq: }}$: sequential runtime.
- $N_{\text {seq: }}$: number of sequential node expansions.
- Parallel AOBB performance metrics:
- $T_{p a r}$: parallel runtime including central preprocessing.
- $S_{p a r:}$ Parallel speedup $T_{\text {seq }} / T_{p a r}$.
- $N_{p a r}$: Node expansions across all subproblems.
- $O_{p a r}$: Relative parallel overhead $N_{p a r} / N_{\text {seq }}$.
- $U_{\text {par: }}$ Avg. processor utilization, relative to longest.

Performance Considerations

- Amdahl's Law [1967]:
- "If a fraction p of a computation can be sped up by a factor or s, the overall speedup cannot exceed $1 /(1-p+p / s)$."
- Example: 20 minute computation, 30 sec preprocessing. Best speedup 40x (regardless of parallel CPUs).

Performance Considerations

- Amdahl's Law [1967]:
- "If a fraction p of a computation can be sped up by a factor or s, the overall speedup cannot exceed $1 /(1-p+p / s)$."
- Example: 20 minute computation, 30 sec preprocessing. Best speedup 40x (regardless of parallel CPUs).
- Implication of overhead $O_{p a r}$:
- Proposition: assuming parallel overhead o and execution on p CPUs, speedup is bounded by p / o.
- Example: 500 CPUs, overhead $2 \rightarrow$ best speedup 250.
- In practice even lower due to load balancing, communication delaysfe ettqrs

Parallel AOBB Performance Factors

- Distributed System Overhead:
- Master preprocessing and parallelization decision.
- Repeated preprocessing in workers (mini-buckets).
- Communication and scheduling delays.

Parallel AOBB Performance Factors

- Distributed System Overhead:
- Master preprocessing and parallelization decision.
- Repeated preprocessing in workers (mini-buckets).
- Communication and scheduling delays.
- Parallel search space redundancies:
- Impacted pruning, lack of bounds propagation.
- Local search for near-optimal initial bound.
- Loss of caching across parallel subproblems.
- Analyzed subsequently.

Parallel AOBB Performance Factors

- Distributed System Overhead:
- Master preprocessing and parallelization decision.
- Repeated preprocessing in workers (mini-buckets).
- Communication and scheduling delays.
- Parallel search space redundancies:
- Impacted pruning, lack of bounds propagation.
- Local search for near-optimal initial bound.
- Loss of caching across parallel subproblems.
- Analyzed subsequently.
- Parallel AOBB is not "embarrassingly parallel".

Redundancy Analysis

Redundancy Analysis

$[\mathrm{BC}](\mathrm{D}) \quad \mathrm{F}:[\mathrm{BE}]$
[D] G
(H) ${ }^{\text {EFF] }}$

Redundancy Analysis

$[\mathrm{BC}] \mathrm{D}, \mathrm{F},[\mathrm{BE}]$
[D] G
(H) $[\mathrm{EF}]$

Redundancy Analysis

Redundancy Analysis

Redundancy Analysis

Redundancy Analysis

Redundancy Analysis

Redundancy Analysis

(B)

Redundancy Analysis

d=1

Redundancy Analysis

d=1

Redundancy Analysis

d=1

Redundancy Analysis

d=1

Redundancy Analysis

$[D]$
(H) $[\mathrm{EF}]$

B

0101010101010101010101020001010101010100101010101

$$
\{A=0, B=0\} \quad\{A=0, B=0\} \quad\{A=0, B=1\} \quad\{A=0, B=1\} \quad\{A=1, B=0\} \quad\{A=1, B=0\} \quad\{A=1, B=1\} \quad\{A=1, B=1\}
$$

Redundancy Analysis

[D]
H $[\mathrm{EF}]$

Redundancy Analysis

(A)

$[\mathrm{D}]$
(H) $[\mathrm{EF}]$

B

Redundancy Analysis

(A)

Redundancy Quantied

- Definitions:
- $w_{d}(X)$ is size of context of X below level d.
- $\pi_{d}(X)$ is ancestor of X at level d.
- Underlying parallel search space size SS $_{p a r}$:

$$
S S_{p a r}(d)=\sum_{j=0}^{d} \sum_{X^{\prime} \in L_{j}} k^{w\left(X^{\prime}\right)+1}+\sum_{j=d+1}^{h} \sum_{X^{\prime} \in L_{j}} k^{w\left(\pi_{d}\left(X^{\prime}\right)\right)+w_{d}\left(X^{\prime}\right)+1}
$$

Redundancy Quantied

- Definitions:
- $w_{d}(X)$ is size of context of X below level d.
- $\pi_{d}(X)$ is ancestor of X at level d.
- Underlying parallel search space size $S S_{p a r}$:

$$
S S_{p a r}(d)=\sum_{j=0}^{d} \sum_{X^{\prime} \in L_{j}} k^{w\left(X^{\prime}\right)+1}+\sum_{j=d+1}^{h} \sum_{X^{\prime} \in L_{j}} k^{w\left(\pi_{d}\left(X^{\prime}\right)\right)+w_{d}\left(X^{\prime}\right)+1}
$$

Redundancy Quantied

- Definitions:
- $w_{d}(X)$ is size of context of X below level d.
- $\pi_{d}(X)$ is ancestor of X at level d.
- Underlying parallel search space size $S S_{p a r}$:

Redundancy Quantied

- Definitions:
- $w_{d}(X)$ is size of context of X below level d.
- $\pi_{d}(X)$ is ancestor of X at level d.
- Underlying parallel search space size $S S_{p a r}$:

Redundancy Quantied

- Definitions:
- $w_{d}(X)$ is size of context of X below level d.
- $\pi_{d}(X)$ is ancestor of X at level d.
- Underlying parallel search space size $S S_{p a r}$:

$-S S_{p a r}(0)=S S_{p a r}(h)=S S_{s e q}$.
$-S S_{p a r}(d) \geq S S_{p a r}(0)$ for all d.

Redundancy vs. Parallelism

- Assume parallelism with sufficient CPUs.
- Consider conditioning space + max. subproblem.

Example revisited:	d					
parallel space $S S_{\text {par }}(d)$	50	78	102	70	50	50
conditioning space	0	2	6	22	38	50
no. of subproblems	1	2	8	8	6	0
max. parallel subproblem	50	38	14	6	2	-
cond. space + max. subprob	50	40	20	28	40	50

Redundancy vs. Parallelism

- Assume parallelism with sufficient CPUs.
- Consider conditioning space + max. subproblem.

Example revisited:	d					
parallel space $S S_{\text {par }}(d)$	50	78	102	70	50	50
conditioning space	0	2	6	22	38	50
no. of subproblems	1	2	8	8	6	0
max. parallel subproblem	50	38	14	6	2	-
cond. space + max. subprob	50	40	20	28	40	50

Redundancy vs. Parallelism

- Assume parallelism with sufficient CPUs.
- Consider conditioning space + max. subproblem.

	d					
Example revisited:	0	1	2	3	4	5
parallel space $S S_{\text {par }}(d)$	50	78	102	70	50	50
conditioning space	0	2	6	22	38	50
no. of subproblems	1	2	8	8	6	0
max. parallel subproblem	50	38	14	6	2	-
cond. space + max. subprob	50	40	20	28	40	50

Redundancy vs. Parallelism

- Assume parallelism with sufficient CPUs.
- Consider conditioning space + max. subproblem.

- But: doesn't capture explored search space.
- Can pruning compensate for redundancies?

Empirical Evaluation

- Parallel experiments over 75 benchmarks.
- Instances from four classes, with varying i-bound.
- $T_{\text {seq }}$ from under 1 hour to over 2 weeks.
- Run with 20, 100, and 500 parallel CPUs.

Empirical Evaluation

- Parallel experiments over 75 benchmarks.
- Instances from four classes, with varying i-bound.
- $T_{\text {seq }}$ from under 1 hour to over 2 weeks.
- Run with 20, 100, and 500 parallel CPUs.
- Experimental Methodology:
- Apply different fixed-depth cutoff depths d.
- Use subproblem count p as var-depth input.

Empirical Evaluation

- Parallel experiments over 75 benchmarks.
- Instances from four classes, with varying i-bound.
- $T_{\text {seq }}$ from under 1 hour to over 2 weeks.
- Run with 20, 100, and 500 parallel CPUs.
- Experimental Methodology:
- Apply different fixed-depth cutoff depths d.
- Use subproblem count p as var-depth input.
- ~91 thousand CPU hours - over 10 years!
- Over 1400 parallel runs.
- Can only summarize s@mers aspects here.

Example Results

- Record overall parallel runtime / speedup.
- Lots of data!

				Cutoff depth d					
instance	i	$T_{\text {seq }}$	\#cpu	2	4	6	8	10	12
				fix var	fix var	fix var	fix var	fix var	fix \quad var
$\begin{aligned} & \text { lF3-15-59 } \\ & \begin{array}{l} n=3730 \\ k=31 \\ w=31 \end{array} \\ & h=84 \end{aligned}$	19	43307		($p=4$)	($p=20$)	($p=80$)	($p=476$)	($p=1830$)	($p=6964$)
			20	1585815694	59095470	36492845	27442501	34823505	72227238
			100	1585815694	59095470	34342247	$1494 \quad 723$	928741	15401536
			500	1585815694	59095470	34342247	$1414 \quad 573$	692260	415399
$\begin{aligned} & \text { ped44 } \\ & \begin{array}{l} n=811 \\ k==85 \\ w=65 \end{array} \\ & h \end{aligned}$		95830		$(p=4)$	($p=16$)	($p=112$)	($p=560$)	($p=2240$)	($p=8960$)
			20	2677626836	97169481	67416811	79597947	101039763	1241812472
			100	2677626836	97169481	23443586	17991700	21262276	$2545 \quad 2543$
			500	2677626836	97169481	16593586	583886	536905	569824
$\begin{aligned} & \text { ped7 } \\ & \begin{array}{l} n=1068 \\ k=106 \\ w=32 \\ h=90 \end{array} \end{aligned}$	6118383			$(p=4)$	($p=32$)	($p=160$)	($p=640$)	($p=1280$)	($p=3840$)
			20	3538758872	1233858121	90318515	96547319	87057582	82367693
			100	3538758872	1195658121	51227690	48602306	39291814	26441649
			500	3538758872	1195658121	49847690	43592086	32941301	1764943

Example Results

- Record overall parallel runtime / speedup.
- Lots of data!

instance	i	$T_{\text {seq }}$	\#cpu	Cutoff depth d					
				2	4	6	8	10	12
				fix var					
IF3-15-59				$(p=4)$ 2	${ }^{(p=20)}$	($p=80$)	($p=476$)	($p=1830$)	($p=6964$)
		43307	20	2.732 .76	$7.33-7.92$	11.8715 .22	15.7817 .32	12.4412 .36	$6.00 \quad 5.98$
$\begin{aligned} & n=3 \\ & k=3 \\ & w=31 \end{aligned}$		43307	100	2.732 .76	7.33	12.6119 .27	$28.99 \quad 59.90$	$46.67 \quad 58.44$	$28.12 \quad 28.19$
$h=84$			500	2.732 .76	$7.33 \quad 7.92$	12.6119 .27	$30.63 \quad 75.58$	62.58166 .57	104.35108 .54
				($p=4$)	($p=16$)	($p=112$)	($p=560$)	($p=2240$)	($p=8960$)
		95830	20	3.583 .57	9.8610 .11	14.2214 .07	12.0412 .06	$9.49 \quad 9.82$	$7.72 \quad 7.68$
$n=81$ $k=4$ $w=25$		95830	100	3.583 .57	9.8610 .11	40.8826 .72	$53.27 \quad 56.37$	45.0842 .10	$37.65 \quad 37.68$
${ }^{w} h=65$			500	3.583 .57	9.8610 .11	57.7626 .72	164.37108 .16	178.79105 .89	168.42116 .30
				($p=4$)	($p=32$)	($p=160$)	($p=640$)	($p=1280$)	($p=3840$)
$\frac{\mathrm{ped}}{n=1068}$		8383	20	3.352 .01	$9.59 \quad 2.04$	13.1113 .90	$\begin{array}{lll}12.26 & 16.17\end{array}$	13.6015 .61	14.3715 .39
		8383	100	3.352 .01	$9.90 \quad 2.04$	23.1115 .39	$24.36 \quad 51.34$	$30.13 \quad 65.26$	$44.77 \quad 71.79$
$h=90$			500	3.352 .01	$9.90 \quad 2.04$	23.7515 .39	$27.16 \quad 56.75$	$35.94 \quad 90.99$	67.11125 .54

Example: LargeFam3-15-59, $i=19$

- Sequential runtime

$$
T_{\text {seq }}=43,307 \mathrm{sec} .
$$

Example: LargeFam3-15-59, $i=19$

- Sequential runtime $T_{\text {seq }}=43,307 \mathrm{sec}$.

(Fixed-depth)

(Variable-depth)

Example: Pedigree7, $i=6$

- Sequential runtime $T_{\text {seq }}=118,383 \mathrm{sec}$.

Example: Pedigree7, $i=6$

- Sequential runtime $T_{\text {seq }}=118,383 \mathrm{sec}$.

(Fixed-depth)
ped7, $i=6,20$ CPUs, fixed $d=5$

(Variable-depth)

Example: Pedigree7, $i=6$

- Sequential runtime $T_{\text {seq }}=118,383 \mathrm{sec}$.

(Fixed-depth)
ped7, $i=6,20$ CPUs, fixed $d=5$

Example: Pedigree7, $i=6$

- Sequential runtime $T_{\text {seq }}=118,383 \mathrm{sec}$.

Example: Pedigree7, $i=6$

- Sequential runtime $T_{\text {seq }}=118,383 \mathrm{sec}$.

(Fixed-depth)

(Variable-depth)

Example: Pedigree7, $i=6$

- Sequential runtime $T_{\text {seq }}=118,383 \mathrm{sec}$.

(Fixed-depth)

Example: LargeFam3-16-56, $i=15$

- Sequential runtime

$$
T_{\text {seq }}=1,891,710 \mathrm{sec} .
$$

IF3-16-56, i=15

Example: LargeFam3-16-56, $i=15$

- Sequential runtime $T_{\text {seq }}=1,891,710 \mathrm{sec}$.
(Fixed-depth)
IF3-16-56, $\mathrm{i}=15,100$ CPUs, fixed $\mathrm{d}=7$
IF3-16-56, $\mathrm{i}=15$

Example: LargeFam3-16-56, $i=15$

- Sequential runtime $T_{\text {seq }}=1,891,710 \mathrm{sec}$.
(Fixed-depth)

IF3-16-56, $\mathrm{i}=15$

Example: Pdb1huw, $i=3$

- Sequential runtime

$$
T_{\text {seq }}=545,249 \mathrm{sec} .
$$

Example: Pdb1huw, $i=3$

- Sequential runtime
$T_{\text {seq }}=545,249 \mathrm{sec}$.

(Fixed-depth)
pdb1huw, $i=3,100$ CPUs, fixed $d=4$

(Variable-depth)

Example: Pdb1huw, $i=3$

- Sequential runtime
$T_{\text {seq }}=545,249 \mathrm{sec}$.

(Fixed-depth) pdb1huw, $i=3,100$ CPUs, fixed $d=4$

Example: 75-25-1, $i=14$

- Sequential runtime

$$
T_{\text {seq }}=15,402 \mathrm{sec} .
$$

Example: 75-25-1, $i=14$

- Sequential runtime $T_{\text {seq }}=15,402 \mathrm{sec}$.

(Fixed-depth)

(Variable-depth)

Example: 75-25-1, $i=14$

- Sequential runtime $T_{\text {seq }}=15,402 \mathrm{sec}$.

(Fixed-depth)

Underlying vs. Explored Search Space

- Compute $S S_{p a r}$ bound (ahead of time).
- Plot against $N_{p a r}$ for different i-bounds.

Underlying vs. Explored Search Space

- Compute $S S_{p a r}$ bound (ahead of time).
- Plot against $N_{p a r}$ for different i-bounds.

Underlying vs. Explored Search Space

- Compute $S S_{p a r}$ bound (ahead of time).
- Plot against $N_{p a r}$ for different i-bounds.

Underlying vs. Explored Search Space

- Compute $S S_{p a r}$ bound (ahead of time).
- Plot against $N_{p a r}$ for different i-bounds.

Underlying vs. Explored Search Space

- Compute $S S_{p a r}$ bound (ahead of time).
- Plot against $N_{p a r}$ for different i-bounds.

ped7

Underlying vs. Explored Search Space
 - Compute $S S_{p a r}$ bound (ahead of time).

- Plot against $N_{p a r}$ for different i-bounds.

IF3-15-59

pdb1huw

pdb1kao

75-25-1

75-26-10

Redundancies and Overhead $O_{p a r}$

- Assess parallel redundancies in practice.
- Node expansion overhead $O_{p a r}=N_{p a r} / N_{s e q}$.

Redundancies and Overhead $O_{p a r}$

- Assess parallel redundancies in practice.
- Node expansion overhead $O_{p a r}=N_{p a r} / N_{s e q}$.

Redundancies and Overhead $O_{p a r}$

- Assess parallel redundancies in practice.
- Node expansion overhead $O_{p a r}=N_{p a r} / N_{\text {seq }}$.

Redundancies and Overhead $O_{p a r}$

- Assess parallel redundancies in practice.
- Node expansion overhead $O_{p a r}=N_{p a r} / N_{s e q}$.

Redundancies and Overhead $O_{p a r}$

- Assess parallel redundancies in practice.
- Node expansion overhead $O_{p a r}=N_{p a r} / N_{\text {seq }}$.

ped7

IF3-13-58

IF3-15-59

Redundancies and Overhead $O_{p a r}$

- Assess parallel redundancies in practice.
- Node expansion overhead $O_{p a r}=N_{p a r} / N_{\text {seq }}$.

IF3-13-58

IF3-15-59

pdb1huw

75-25-3

75-26-10

Parallel Scaling Summary

- Plot speedup against CPU count.
- Trade off load balancing vs. overhead:
- \#subproblems $\approx 10 \times$ \#CPUs

Parallel Scaling Summary

- Plot speedup against CPU count.
- Trade off load balancing vs. overhead:
- \#subproblems $\approx 10 \times$ \#CPUs

Parallel Scaling Summary

- Plot speedup against CPU count.
- Trade off load balancing vs. overhead:
- \#subproblems $\approx 10 \times$ \#CPUs

Parallel Scaling Summary

- Plot speedup against CPU count.
- Trade off load balancing vs. overhead:
- \#subproblems $\approx 10 \times$ \#CPUs

Parallel Scaling Summary

- Plot speedup against CPU count.
- Trade off load balancing vs. overhead:
- \#subproblems $\approx 10 \times$ \#CPUs

Parallel Scaling Summary

- Plot speedup against CPU count.
- Trade off load balancing vs. overhead:
- \#subproblems $\approx 10 \times$ \#CPUs

Fixed-depth vs. Variable-depth

- Compare speedup of the two parallel schemes.
- Count cases that are 10\% and 50\% better.

	margin	fix var					
		$d=2$	$d=4$	$d=6$	$d=8$	$d=10$	$d=12$
Pedigree	10\%	2016	$40 \quad 30$	3841	$24 \quad 49$	$28 \quad 40$	$12 \quad 28$
	50\%	$\begin{array}{lr} \mathbf{2 0} & 12 \\ (116 & \text { total }) \end{array}$	2715	3015	$16 \quad 22$	$20 \quad 9$	$\begin{array}{cc} 4 & 13 \\ (88 & \text { total }) \end{array}$
			(116 total)	(116 total)	(116 total)	(108 total)	
		$d=2$	$d=4$	$d=6$	$d=8$	$d=10$	$d=12$
LargeFam	10\%	$32 \quad 12$	$21 \quad 30$	1151	752	547	832
	50\%	120	$\begin{array}{cr} 15 & 10 \\ (84 \text { total }) \\ \hline \end{array}$	$\begin{array}{cc} 8 & \mathbf{2 8} \\ (84 \text { total) } \\ \hline \end{array}$	$\begin{array}{cr} 3 & \mathbf{3 6} \\ (76 & \text { total }) \\ \hline \end{array}$	$\begin{array}{cr} 1 & \mathbf{3 0} \\ (76 \text { total) } \end{array}$	$\begin{array}{cc} 5 & \mathbf{2 2} \\ (76 \text { total }) \end{array}$
		(84 total)					
		$d=1$	$d=2$	$d=3$	$d=4$	$d=5$	$d=6$
Pdb	10\%	$0 \quad 0$	$5 \quad 39$	$0 \quad 33$	$0 \quad 20$	$0 \quad 4$	$0 \quad 4$
	50\%	0 0	$\begin{array}{cr} 4 & \mathbf{3 0} \\ (44 \text { total) } \end{array}$	$\begin{array}{cr} 0 & \mathbf{2 8} \\ (36 \text { total }) \end{array}$	$\begin{array}{cr} 0 & \mathbf{1 6} \\ \text { (20 total) } \end{array}$	$\begin{array}{ll} 0 & 4 \\ (4 \text { total) } \end{array}$	$\begin{array}{lr} 0 & 4 \\ (4 \text { total }) \end{array}$
		(44 total)					
		$d=2$	$d=4$	$d=6$	$d=8$	$d=10$	$d=12$
Grid	10\%	2013	129	178	2710	$20 \quad 9$	$12 \quad 19$
	50\%	$12 \quad 4$	$\begin{gathered} 10 \\ (60 \text { total }) \end{gathered}$	$\begin{array}{cc} \mathbf{9} & 3 \\ (60 \text { total }) \\ \hline \end{array}$	$\begin{array}{lr} 11 & 3 \\ (60 \text { total }) \end{array}$	$\begin{array}{cr} 5 & \mathbf{6} \\ (60 \text { total }) \\ \hline \end{array}$	$\begin{array}{rr} 5 & \mathbf{8} \\ (60 \text { total }) \end{array}$
		(60 total)					

Outline

- Bounds and heuristics
- ANDIOR Search
- Explolting parallelism
- Software
- UAI Probabilistic Inference Competition

Software

- aolib
- http://graphmod.ics.uci.edu/group/Software (standalone AOBB, AOBF solvers)
- daoopt
- https://github.com/lotten/daoopt (distributed and standalone AOBB solver)

UAI Probabilistic Inference Competitions

- 2006
- 2008
- 2011
- 2014

(daoopt)

(merlin)

MPE/MAP

MMAP

Conclusion

- Only a few principles
- Inference and search should be combined
- Time-space tradeoff
- AND/OR search should be used
- Caching in search should be used
- Parallel search should be used if a distributed environment is available

